

NSD8306 Multi-channel Half Bridge Driver

Datasheet (EN) 1.0

Product Overview

The NSD8306 is a multi-channel half-bridge driver for automotive applications including HVAC flap DC motors, side mirror adjustment / fold motors, general relays, or other LEDs.

With the different connection configuration of half-bridge power stage outputs, the device can driver DC motors in simultaneous, sequential, or parallel mode. The outputs also support DC motor in forward, reverse, slow decay, and fast decay operation.

The device includes 6x internal configurable PWM generators, which allow for flexible control for LED dimming or motor current limitation during start up or stall condition.

The integrated serial peripheral interface (SPI) controls all outputs and provides diagnostic information including normal operation, POR, VM undervoltage/overvoltage, overcurrent, over temperature protection and open load status.

The device features sleep mode with low quiescent current when EN input is low or VDD falls below POR threshold.

Applications

- HVAC DC motors
- Side mirror adjustment and mirror fold
- Relays
- LEDs

Device Information

Part Number	Package	Body Size
NSD8306-Q1HTSXR	HTSSOP24	7.80mm × 4.40mm

Key Features

- 6x half bridge driver
 - HS/LS Rdson: 0.75ohm typ at 25°C
 - Device 1A per HB channel, 3A max for all channel all on
 - Half bridge output can be in parallel
- Wide 4.5V to 36V (configurable) operating Voltage
- Very low quiescent sleep mode
- PWM mode with internal PWM generation on each channel
 - 4 PWM frequency options: 80Hz/100Hz/200Hz/2000 Hz
 - 8-bit duty resolution (1/255, ~0.4 % duty)
 - Slew rate control for supporting 200, 2000Hz
- Integrated diagnosis and fault protection features
 - VM undervoltage & overvoltage protection (UV&OV)
 - Overcurrent / short circuit Protection (OCP/SCP)
 - Over temperature warning & shutdown
 - Open load diagnosis
 - Dedicated nFault indicator pin
- HTSSOP24, 7.8mm X 4.4mm with exposed PAD

Functional Block Diagrams

Figure 1. NSD8306 Block Diagram

1. Pin Configuration and Functions

Figure 2. NSD8306 Pinout

Table 1. NSD8306 Pin Description

SYMBOL	NO.	ΤΥΡΕ	DESCRIPTION
GND	1,13, 24	PWR	Pins for ground connection, all ground pins should be externally connected together.
OUT1	2	0	Half-bridge output1 pin.
OUT5	3	0	Half-bridge output5 pin.
SDI	5	Ι	SPI data input pin
VDD	6	PWR	Logic supply input pin,
SDO	7	0	SPI data output pin
EN	8	-	Driver enable input pin with internal pull down (active HIGH). If EN input pin is pulled low, all OUTx go to tri-state and device move to low-power sleep state.
NC	4,9,15, 17,18,22	-	Not connected
OUT6	10	0	Half-bridge output6 pin.

OUT4	11	0	Half-bridge output4 pin.
nFAULT	12	0	Fault alert indicator output (active LOW). Open drain structure requires external pull up resistor, typical 4.7Kohm can be used.
OUT3	14	0	Half-bridge output3 pin.
VM	16,21	PWR	5V to 36V power supply. Connect a 0.1-μF bypass capacitor to ground, as well as sufficient bulk capacitor (>10uF) needs to guarantee VM pin voltage in maximum range. Put the 0.1uF and bulk capacitor (>10uF) close to the VM pin. Two VM pins should be externally connected together.
NCS	19	I	SPI chip select input pin.
SCK	20	I	SPI clock input pin.
OUT2	23	0	Half-bridge output2 pin.
Thermal PAD	_		Thermal pad. Connect to board ground. For good thermal dissipation, use large ground planes on multiple layers, and multiple nearby vias connecting those planes.

2. Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
VM	Power supply voltage	-0.3	40	V
VDD	Logic supply voltage	-0.3	6	V
Vsdi, Vsdo, Vncs, Vsck, Ven, Vnfault	Logic input/ouput voltage (EN, SDI, SDO, NCS, SCK, nFAULT)	-0.3	VDD+0.3	V
Maria	Output voltage (OUTx) DC condition	-0.3	40	V
νουτχ	Output voltage (OUTx) AC condition, lout=1A for t<500ms	-1	40	V

3. ESD Ratings

SYMBOL	PARAMETER	VALUE	UNIT
VESD_HBM	Human Body Model (HBM), VMx & VOUTx pins per ANSI/ESDA/JEDEC JS-001	±4000	V
	Human Body Model (HBM), other pins per ANSI/ESDA/JEDEC JS-001	±2000	V
	Charged device model (CDM), Corner pins, per JEDEC specification JS-002	±750	V
VESD_CDM	Charged device model (CDM), other pins, per JEDEC specification JS-002	±500	V

4. Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNIT
VM	VM supply, normal voltage range	4.5		18	V
	VM supply, extended voltage range ⁽¹⁾	18		Vov	V
	VM supply, over voltage range ⁽²⁾	Vov		40	V
VDD	VDD supply voltage	3		5.5	V
EN, NCS, SCK, SDO, SDI, nFAULT	Logic input / output voltage	0		5.5	V

(1) Device is capable of full functional operation; however, parameter characteristic is not guarantee, deviation is possible.

(2) No damage to device, and power stage will be disabled during overvoltage range. Full functional operation will resume when battery voltage returns to normal voltage range.

5. Thermal Information

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNIT
Та	Ambient operating ambient temperature	-40		125	°C
Тј	Junction temperature	-40		150	°C
Tstg	Storage temperature	-65		150	°C
Rthjc	Thermal resistance, junction to case		2.7		°C/W
	Thermal resistance, junction to ambient, on 2-layer PCB		62		°C/W
Rthja	Thermal resistance, junction to ambient, on 4-layer PCB based on JEDEC standard		30		°C/W

6. Electrical characteristics

т					line encelfied
1.1	$= -40^{-1}$, to 150^{-1} .	VIVI=4 5V 10 18		uniess otnerw	/ise speciliea
• 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		noo opoonnou.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
POWER SUP	POWER SUPPLY (VM)							
	VM operating supply	VM = 13.5V, EN=HIGH, all output off		0.5	1	mA		
IVM	current	VM = 13.5V, EN=HIGH, all high side on			5	mA		
IVM_SLEEP	VM sleep current	VM = 13.5V, -40≤Tj≤85°C, EN=LOW, total current of all VM pin			3	μΑ		
	VM undervoltage	VM falls until UVLO triggers	3.6		4.1	V		
Vuv	threshold	VM rises until operation recovers	3.9		4.4	V		
V _{UV_HYS}	VM undervoltage hysteresis			400		mV		
tuv	VM undervoltage deglitch time	Guaranteed by digital scan		10		us		
		VM increasing, switch off, OVP_H = 0	21		25	V		
N		VM decreasing, switch on, OVP_H = 0	19		23	V		
VOV	vivi overvoltage	VM increasing, switch off, OVP_H = 1	32		36	V		
		VM decreasing, switch on, OVP_H = 1	30		34	V		
V _{OV_HYS}	VM overvoltage hysteresis			2		V		
t _{ov}	VM overvoltage deglitch time	Guaranteed by digital scan		10		us		

Copyright © 2021, NOVOSENSE

	Y INPUT (VDD)					
		EN=High, all outputs off, SPI not active			3	mA
IVDD	Input current of VDD	EN=High, SPI active 5MHz, all high side on			5	mA
I _{VDD_SLEEP}	Input current of VDD in sleep mode	EN=LOW, SPI inactive -40≤Tj≤85°C		1	2.5	uA
Vvdd_por_h	POR high threshold	VDD increasing	2.5		3	V
V _{VDD_POR_L}	POR low threshold	VDD decreasing	2.3		2.8	V
LOGIC CONT	ROL INPUT (EN, NCS, SDI,	SCK)				
V _{IL}	Input logic low voltage				0.3*VD D	v
VIH	Input logic high voltage		0.7* VDD			v
V _{HYS}	Input logic hysteresis			0.5		v
R _{PD}	Pulldown resistance	EN, SDI, SCK	50	100	150	kΩ
R _{PU}	Pullup resistance	NCS	50	100	150	kΩ
CIN	Input capacitance	NCS, SDI, SCK pin, Specified by design			15	pF
$T_{Deglitch}$	Deglitch filter on EN falling and rising			10	20	us
T _{WAKE}	Wake-up time	After EN low to high			150	us
NFAULT OU	TPUT (OPEN DRAIN)					
V_{OL_nFault}	Output low voltage	I _{OD} = 5mA			0.5	V
I _{LEAK_nFault}	Output high leakage current	V _{OD} = 5V	-1		1	uA
SDO OUTPU	IT (PUSH PULL)					
Vol_sdo	SDO Output low voltage	lo = 2mA			0.5	v
V _{OH_SDO}	SDO Output high voltage	lo = 2mA	VDD- 0.5			v
I _{LEAK_SDO}	SDO tristate leakage	NCS high, 0 <v<sub>SDO<vdd< td=""><td>-1</td><td></td><td>1</td><td>uA</td></vdd<></v<sub>	-1		1	uA
Соит	Output capacitance	Specified by design			30	pF
HALF BRIDG	E OUTPUS (OUT1, OUT2, O	OUT3, OUT4, OUT5, OUT6)		•	•	•
5	High-side or Low-side	I = 0.5 A, Tj = 25°C		0.75	1.1	Ω
KDS(ON)	FET on resistance	I = 0.5 A, Tj = 150°C			1.5	Ω

Datasheet (EN) 1.0

		VOUTx = 0V, EN = 1	-2	-1	-	uA
ILEAK_HS		VOUTx = 0V, EN = 0	-2	-1	-	uA
		VOUTx = 13.5V, EN = 1	-	1	2	uA
ILEAK_LS	LS OFF-state leakage	VOUTx = 13.5V, EN = 0	-	1	2	uA
t _{RISE}	Output rise time	VM = 13.5 V, resistive load 100 ohm, HBx_SR = 0		0.6		V/µs
t _{FALL}	High side or low side	VM = 13.5 V, resistive load 100 ohm, HBx_SR = 1		2.5		V/µs
	Propagation delay	HBx_SR = 0	5	12	25	μs
t PD	(high side / low side ON/OFF)	HBx_SR = 1	3	5	10	μs
	Cross protection time,	HBx_SR = 0	8	20	32	μs
t _{DEAD}	high to low / low to high	HBx_SR = 1	2	5	15	μs
OVERCURRE	NT PROTECTION					
	Over current threshold	Half bridge low side	1		1.6	А
IOC		Half bridge high side	-1.6		-1	А
		OC_Filter bit = 000		10		
		OC_Filter bit = 001		5		
		OC_Filter bit = 010		2.5		
	OC dealitab filter time	OC_Filter bit = 011		1		
LOC	OC deglitten inter time	OC_Filter bit = 100		60		μs
		OC_Filter bit = 101		40		
		OC_Filter bit = 110		30		
		OC_Filter bit = 111		20		
ON STATE O	PEN LOAD DIAGNOSIS					
		Half bridge low side, HBx_OPL_TH = 0	3	10	20	mA
IOL	Open load threshold	Half bridge high side, HBx_OPL_TH = 0	-20	-10	-3	mA
t _{oL}	Open load filter time	HBx_OPL_TH = 0, guarantee by digital scan	2	3	4	ms
	Low open load	Half bridge low side, HBx_OPL_TH = 1	0.3	1	2	mA
	threshold	Half bridge high side, HBx_OPL_TH = 1	-2	-1	-0.3	mA

Datasheet (EN) 1.0

t _{ol_low}	Low open load filter time	HBx_OPL_TH = 1, guarantee by digital scan	0.2	0.3	0.4	ms		
ON STATE O	ON STATE OPEN LOAD DIAGNOSIS							
	Diag pull up current	HBx_IPUPD_MODE = 0	133	200	266	uA		
Ιρυ	Diag pull up current	HBx_IPUPD_MODE = 1	666	1	1.5	mA		
	Diag pull down current	HBx_IPUPD_MODE = 0	400	600	800	uA		
IPD	Diag pull down current	HBx_IPUPD_MODE = 1	2	3	4.5	mA		
V _{STA_HB}	Off state status threshold	OUTx pin	0.54 *VD D	0.6*V DD	0.66*V DD	V		
THERMAL P	ROTECTION							
OT _{WARN}	Thermal warning temperature		120	140	160	°C		
T _{HYS_OTW}	Thermal warning hysteresis			20		°C		
OT _{SD}	Thermal shutdown temperature		150	170	190	°C		
T _{HYS_OTSD}	Thermal shutdown hysteresis			20		°C		
SPI AC TIMII	NGS							
T _{cll}	Minimum time CLK = LOW (5)	Application info	85			ns		
T _{clh}	Minimum time CLK = HIGH (4)	Application info	85			ns		
T _{pcld}	Propagation delay (SCLK to data at SDO active) (B)	Cload=30pF			30	ns		
T _{lead}	CLK change L/H after NCS = LOW (2)	Application info	100			ns		
T _{scld}	SDI input setup time (CLK change H/L after SDI data valid) (F)	Application info	30			ns		
T _{hcld}	SDI input hold time (SDI data hold after CLK change H/L) (C)	Application info	30			ns		
T _{sclch}	CLK low before NCS low (1)	Application info	125			ns		

T _{lag}	CLK low before NCS high (6)	Application info	100		ns
T _{hclch}	CLK high after NCS high	Application info	100		ns
Tonncs	NCS min high time (9)	Application info	1		us
T_{pchdz}	NCS L/H to SDO @ high impedance (E)	Cload=30pF		75	ns
F _{CLK_SPI}	CLK frequency (50% duty cycle)	Application info		5	MHz

Figure 3. SPI timing diagram

7. Functional description

7.1. VM & VM UV / OV protection

VM is the supply voltage, range from 4.5v to 36v with typical case 13.5v power supply. It is recommended to put at both 100nF ceramic and >10uF bulk electrolytic capacitor closed to each VM pin.

When VM power supply pin voltage falls below the undervoltage threshold (V_{UV}) over 10us typ. undervoltage deglitch time, half bridge outputs OUTx becomes OFF. When VM rise above the V_{UV}, the device automatically resumes operation.

When VM power supply pin voltage rises above the overvoltage threshold (V_{OV}) over 10us typ. overvoltage deglitch time, half bridge outputs OUTx becomes OFF. When VM decrease under the V_{OV} , the device automatically resumes operation. OVP_H register bit set the two different VM input overvoltage threshold.

7.2. VDD

VDD pin accepts wide supply range from 3v to max 5.5v which intends for the compatibility with both 3.3v and 5v system supply. 100nF X7R ceramic capacitor is suggested to put closed to VDD pin.

Internal block, SPI interface, digital block will be inactive when VDD drops below $V_{VDD_POR_L}$, so including charge pump and all half bridge drivers are switched off. Once VDD > $V_{VDD_POR_H}$, internal digital is reset, and status register NPOR bit is set to 0 and can be cleared to 1 by SPI readout (if RD_CLR_EN=1) or CLR_FLT = 1 command.

7.3. EN input

The EN pin signal is common for all output channels. When it is driven low, internal logic / register is reset, charge pump / all outputs are disabled, and device enter sleep mode.

After EN transition from low to high at VDD > V_{VDD_POR_H}, device come out sleep mode at finishing internal POR and NPOR=0.

A T_{WAKE} time shall be wait for charge pump reach regulated voltage once device move from sleep to normal operation.

7.4. Half bridge output stage, OUT1 ~ OUT6

The half bridge drivers are designed to drive DC motor or general used inductive/resistive load like LED.

The power stage outputs (out1~out6) can be in parallel to support higher load current.

Figure 4. Power stage output block diagram

7.4.1. SPI Control ON/OFF operation

To directly operate half bridge output by only SPI ON/OFF control, the two group register as below shall be controlled in following steps.

1. HBx_PWM_EN bit configuration in register HB_PWM_CTRL1 and FW_PWM_CTRL2

2. HBx_HS_EN or HBx_LS_EN bit configuration in register HB_CTRL1 / HB_CTRL2 / CTRL3

Note:

- HBx_PWM_EN bit shall be configured or keep default value '0' for SPI control ON/OFF operation

- One specific half bridge, HBx_HS_EN and HBx_LS_EN shall not be '1' at the same time, otherwise, the specific half bridge will be HIZ until this same bridge HS and LS control bit both high condition is removed

Example of activation of HB1_HS / HB1_LS and HB2_HS / HB2_LS to drive motor by SPI control as table 2 shown

Table 2. Half bridge SPI control register setting example

EN	HB1 register setting	HB2 register setting	OUT1	OUT2
LOW	x	x	HIZ	HIZ
High	HB1_PWM_EN=0	HB2_PWM_EN=0	HIZ	HIZ
	HB1_HS_EN=0	HB2_HS_EN=0		
	HB1_LS_EN=0	HB2_LS_EN=0		
High	HB1_PWM_EN=0	HB2_PWM_EN=0	High	Low
	HB1_HS_EN=1	HB2_HS_EN=0		
	HB1_LS_EN=0	HB2_LS_EN=1		
High	HB1_PWM_EN=0	HB2_PWM_EN=0	Low	Low
	HB1_HS_EN=0	HB2_HS_EN=0		
	HB1_LS_EN=1	HB2_LS_EN=1		
High	HB1_PWM_EN=0	HB2_PWM_EN=0	Low	High
	HB1_HS_EN=0	HB2_HS_EN=1		
	HB1_LS_EN=1	HB2_LS_EN=0		
High	HB1_PWM_EN=0	HB2_PWM_EN=0	High	High
	HB1_HS_EN=1	HB2_HS_EN=1		
	HB1_LS_EN=0	HB2_LS_EN=0		

7.4.2. PWM control operation

PWM control is based on internal digital PWM generator and map control block. It is suggested to set following registers

• PWM frequency / duty cycle / map control

- PWMx_FREQ bit in PWM_FREQ_CTRL1 / PWM_FREQ_CTRL2 registers
 - Total 8 PWM generator, 2bit configuration for each PWM freq as (80Hz / 100Hz / 200Hz /

2000Hz) in +/-30% variation for full operating and temperature range.

(2) PWMx_DUTY_CYCLE bit in PWM_DC_CTRL1~PWM_DC_CTRL8 registers

8bit configuration of PWMx_DUTY_CYCLE define the duty cycle of generated PWMx as 100%*BIT value /255

(3) HBx_PWM_MAP bit in PWM_MAP_CTRL1~PWM_MAP_CTRL6 registers

3bit for each Half bridge, which allows independent and flexible selection from PWM1~PWM8

- Half bridge driver setting for PWM
 - (1) HBx_PWM_EN bit in HB_PWM_CTRL1, FW_PWM_CTRL2
 - HBx_PWM_EN bit changed to '1' will enable the selected half bridge operation control by mapped PWM
 - (2) HBx_HS_EN / HBx_LS_EN in HB_CTRL1~HB_CTRL3

Set HBx_HS_EN or HBx_LS_EN bit at '1' to enable the PWM activated Power FET stage.

- Active / passive freewheeling setting in PWM
 - (1) HBx_FW bit in FW_CTRL_1, FW_PWM_CTRL_2 registers

When the particular half bridge channel is chosen to use PWM, it is also possible to select the active or passive freewheeling option for the half bridge channel, by HBx_FW control bit.

Example of active HB1 SPI ON and HB2 LS in PWM mode / HB2 HS in passive or active freewheeling to drive motor / inductive load

Figure 5. Passive freewheeling vs. active freewheeling

Note:

- Active freewheeling function automatically turns on the freewheeling FET, after the driving FET turns off at PWM ON->OFF and cross protection time t_{DEAD} elapsed

- HBx_FW bit value is not effective when HBx_PWM_EN bit is configured as SPI control ON/OFF
- PWM enable / disable

(1) $PWMx_DIS$ bit in HB_PWM_CTRL2

PWM channel independent enable / disable bit

Example of PWM mode control register setting and steps

- 1. Configure PWMx_DIS bit into '1' (PWM stopped and off) for selected PWM channel
- 2. Configure active or passive free-wheeling in FW_CTRL register
- 3. Assign the PWM channel for selected half-bridge output in PWM_MAP_CTRL register
- 4. Configure the PWM frequency in PWM_FREQ_CTRL register
- 5. Configure the PWM duty cycle in PWM_DC_CTRL register
- 6. Assign the channel driven mode SPI on/off or PWM operation by HBx_PWM_EN in HB_PWM_CTRL register

7. Select the channel HS or LS to be driven by HBx_HS_EN or HBx_LS_EN in HB_CTRL register

8. Active and begin the PWM by PWMx_DIS bit to '0

7.4.3. Output in parallel

For SPI ON/OFF control in parallel, it is recommended to select half bridge channel in same register, ie HB1, HB2, HB3, HB4 HS / LS control bit are all in HB_CTRL_1 register, while HB5, HB6 are in HB_CTRL_2.

For PWM control in parallel, to ensure the HS or LS activated simultaneously, it is mandatory to put the PWM activation in the last step for PWM mode control register setting.

7.5. Half bridge protection and diagnosis

7.5.1. Overcurrent protection

The integrated overcurrent protection function provides the half bridge high side against short to ground or half bridge low side against short to battery.

When the current pass the half bridge high side (VM->highside->OUTx) or flow into the half bridge low side (OUTx->low side->GND), once I_{OC} overcurrent threshold is exceeded, an overcurrent deglitch filter t_{OC} starts and internal circuit limits current at I_{LIM}.

Upon the overcurrent condition last until t_{oc} expiration, the particular half bridge (including high side and low side) are disabled. The OC status bit shall report the corresponding HS or LS which trigger OC. nFAULT pin also asserts low if OC_MASK_FLT is set '0'.

Note:

Even the half bridge output is disabled due to overcurrent protection mechanism, the HBx_HS_EN or HBx_LS_EN bit remains previous state, unless user change the value through SPI.
 When device operate in high voltage up to 36v, short toc (OC_Filter bit in OPL_OC_CTRL3 register) is suggested.

For example, if only HB1 LS is short to battery and detected, OC_STA_1 register HB1_LS_OC bit is asserted while HB1_HS_OC bit not affected, for output stage, both HB1 HS and LS are disabled.

To resume normal driving, besides the overcurrent condition disappear, it is also required to clear the OC status bit by SPI reading (RD_CLR_EN=1) or writing CLR_FLT bit '1' to trigger clear fault command.

Anyhow if overcurrent condition short than toc deglitch filter, the OC event is not confirmed and HB driver keeps normal status.

The device also provides two slew rate options in case half bridge output stage turn off caused by OC protection. High slew rate turns off (typ 2.5v/us) used in default for OC as OC_OFF_SR bit in OPL_OC_CTRL_3 is set to '0', while slow slew rate turns off in OC condition (OC_OFF_SR=1) shall be carefully evaluated for device operating ambient condition and power dissipation.

7.5.2. Open load in ON state

The load current is monitored in each activated output stage for open load detection in ON state.

If the load current is below open load detection threshold I_{OL} for at least typ.2ms (t_{OL}), the corresponding open load bit is set in status register.

The device also provide HBx_OPL_TH selection bit for lower open load threshold I_{OL_LOW} and the corresponding filter time t_{OL_LOW} , which targets for low current loads ie. LED.

Furthermore, two bits, OPL_HB_ACT bit and OPL_mask_FLT bit in OPL_OC_CTRL_2 register, can be configured for open load fault reaction.

OPL_HB_ACT bit determines whether half bridge output status is impacted by ON state open load fault. Default value '0' will disable faulty half bridge HS and LS, while setting the bit value to '1' can choose open load only as information flag and half bridge control / operation not impacted.

OPL_mask_FLT bit determines whether nFault output pin status is impacted by ON state open load fault. Default value '0' unmasks and generates nFault low at open load detected, while changing to '1' will mask open load fault and doesn't report on nFault output.

User can clear the OL status bit by SPI reading (RD_CLR_EN=1) or writing CLR_FLT bit '1' to trigger clear fault command to determine whether open load is still present or disappeared.

Note:

1. For DC motor application, it is recommended to use SPI ON/OFF short activation of outputs (e.g. 3ms) to test DC motor open load status without changing the mechanical state of motor.

2. For LED load application, PWM control might be used, the lower open load threshold and shorter filter shall be chosen. During PWM OFF/freewheeling state, open load detection is blanked.

Each half bridge ON state open load detection can be disabled by HBx_OPL_DIS bit in OPL_CTRL_1/2 register, in case ON state open load not required.

7.5.3. OFF-state diagnosis

Each half bridge OUTx integrates internal pull up current / pull down current and comparator for off-state diagnosis.

Pull up current or pull down current are individually controlled as enable / disable by register OPL_CTRL_5 and OPL_CTRL_6 bit setting values.

The OUTx pin voltage is compared with VSTA_HB to determine its off-state logic status (HIGH or LOW) in real time and reported in HB_STA1 register.

Note:

Half bridge/H-bridge application connection is different with HS or LS usage. It is suggested to follow the following off-state diagnosis step including the pull up / down current enable/disable and OUTx status judgement through microcontroller.

7.5.4. Overtemperature

To protect power stage from overheat, dedicated thermal sensor is placed close to each half bridge power stage, if the temperature increases above the OTwarn, a temperature warning flag is set in SPI STA_0 register, half bridge output operation is not impacted. Once the sensed temperature over the second OT_{SD} threshold, the corresponding OTSD flag is set and power MOSFET channel is automatically disabled.

nFAULT pin can be configured for OTwarn event report upon OTW_MASK_FLT bit setting. Anyhow OTSD will always asserted nFAULT to low.

OTwarn and OTSD flag bit are latched. In order to reactive the output stage after OTSD and release nFAULT pin, the temperature drops below T_{SD}-T_{HYS}, and the thermal shutdown OTSD bit shall be clear by SPI command.

7.5.5. Fault Protection Summary

		VM		VDD	EN	Therm	nal	Load cur	rent	
EVENT	OV1 t>tov	OV2 t>tov	UV	UV	H->L	OVER TEMPERATURE Warning	OVER TEMPERATURE shutdon	ос	OL in ON	
	SPI CTRL OVP	_0 register _H bit				OTW_MASK_FLT		OC_MASK_FLT	OPL_HB_ACT OPL_mask_FLT	
FLAG READ BY SPI	V0_MV	V0_MV	NU_MV		Ż	OTWARN	OTSD	HBX_LS_OC HBX_LS_OC	HBX_LS_OPL HBX_LS_OPL	
Internal supply	0	0	0	•	•	0	0	0	0	
Internal OSC	0	0	0	•		0	0	0	0	
Charge pump	0	0	•			0	0	0	0	
OUT1~OUT12	•	•	•			0	•	▲*1	▲ *2 *1	
nFault	Δ	Δ	Δ	-	-	∆*3	Δ	∆*4	∆ ∗5	
SPI communication	0	0	0	•		0	0	0	0	
SPI REGISTERS	0	0	0	•	•	0	0	0	0	
x	detection		*1	The fault o	output off st	tate, caused by OC o	or OL in ON, is la	tched until the corresp	onding retart cor	ndition is met.
0	normal ope	ration	*2	On state o	pen load s	witch off the corresp	onding HB chanr	el both HS and LS ou	tput, if OPL_HB_	ACT bit =0.
-	not active		*3	OTW_MASK_FLT =1 means that overtemperature warning triggers nFAULT low						
•	partial func	tionality	*4	I OC_MASK_FLT =0 unmasks and report on nFAULT if OC happens						
A	stop/reset		*5	OPL_mas	k_FLT=0 u	nmasks and report o	n nFAULT if Ope	n load on state detecte	ed	
Δ	active LOW	1								

7.6. SPI interface

The following table summarizes the SPI interface designed.

|--|

Parameter	Description						
Protocol	in frame						
Single Frame Length	16 bit, MSB first						
Frame protection	frame length check						
Max. Frequency	5 MHz						
CPOL	0						
СРНА	1						
Master/Slave onfiguration	Slave						

The falling edge of NCS defines the start of the SPI frames. It samples the SDI line at the falling edge of SCK, while the output data is shifted out on SDO line at the rising edge of SCK (CPOL='0' CPHA = '1'). The end of SPI frame is defined by a rising edge of NCS.

7.6.1. Frame Length Check

For each command received, the SPI peripheral checks the number of clock edges at SCK pin. If the total number of edges is not a multiple of 16, the frame content is discarded and an SPI_ERR bit will be returned upon next iteration.

7.6.2. Error Frame

In case one of the following error occurs, the SPI_ERR diagnosis bit will be returned upon next communication iteration:

- Frame Length error
- Invalid address

7.6.3. SPI Frame structure

Each SDI input frame has 16 bits with the following structure:

- 2 operation command bit C1 / C0 '00' for write operation, '01' for read operation
- 6 ADDRESS bits
- 8 DATA bits

	MSB											LSB
BIT	15	14	13	12	11	10	9	8	[7:0]			
SDI	C1	CO	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	DATA			

Register frame SDO responses the selected address and register content bit values. It has with the following structure:

- 2bit '1' , reserved
- 6bits, UV event / OV event , Overtemperature, NPOR and power stage status OC, OL
- 8 DATA bits

	MSB								LSB
ВІТ	15	14	13	12	11	10	9	8	[7:0]
SDO	1	1	ОТ	OL	ос	UV	OV	NPOR	DATA

Note:

For SPI write operation, the SDO response data is the value which is currently written to.

For SPI read operation, the SDO response data is the value which register address has been read.

7.6.4. Parallel and daisy chain capability

SPI communication between microcontroller (SPI master) and multiple these devices (slave) can be operated in parallel or in daisy chain.

Parallel operation: several slave devices are connected to one SPI channel, which share communication lines SDI, SDO and

SCK, but every slave connects dedicated own NCS.

Daisy chain operation: multi devices are connected with shared one NCS and SCK, while each device SDI and SDO are daisy-chain connected.

Datasheet (EN) 1.0

7.6.5. Registers map

CECT.		REG_				bi	its				
SECT	REG_NAME	ADDR	D7	D6	D5	D4	D3	D2	D1	D0	
	<u>STA_0</u>	0x00	Reserved	OTSD	OTWARN	OPL	ОС	VM_UV	VM_OV	NPOR	
	<u>OC_STA_1</u>	0x01	HB4_HS_OC	HB4_LS_OC	HB3_HS_OC	HB3_LS_OC	HB2_HS_OC	HB2_LS_OC	HB1_HS_OC	HB1_LS_OC	
Status	OC_STA_2	0x02		Reve	ersed		HB6_HS_OC	HB6_LS_OC	HB5_HS_OC	HB5_LS_OC	
registers	OPL_STA_1	0x04	HB4_HS_OPL	HB4_LS_OPL	HB3_HS_OPL	HB3_LS_OPL	HB2_HS_OPL	HB2_LS_OPL	HB1_HS_OPL	HB1_LS_OPL	
	OPL_STA_2	0x05		Reve	ersed		HB6_HS_OPL	HB6_LS_OPL	HB5_HS_OPL	HB5_LS_OPL	
	<u>HB STA 1</u>	0x2B	Reve	ersed	HB6_STA	HB5_STA	HB4_STA	HB3_STA	HB2_STA	HB1_STA	
	<u>GEN_CTRL_0</u>	0x07	OFF_DIAG_CO MP_EN		DEVICE_ID		OC_MASK_FLT	OTW_NMASK_ FLT	OVP_H	DIAG_CLR	
	HB CTRL 1	0x08	HB4_HS_EN HB4_LS_EN		HB3_HS_EN	HB3_LS_EN	HB2_HS_EN	HB2_LS_EN	HB1_HS_EN	HB1_LS_EN	
	HB CTRL 2	0x09		Reve	ersed		HB6_HS_EN	HB6_LS_EN	HB5_HS_EN	HB5_LS_EN	
	HB_PWM_CTRL1	0x0B	Reversed		HB6_PWM_EN	HB5_PWM_EN	HB4_PWM_EN	HB3_PWM_EN	HB2_PWM_EN	HB1_PWM_EN	
	HB_PWM_CTRL2	0x0C	PWM8_DIS PWM7_DIS		PWM6_DIS	PWM5_DIS	PWM4_DIS	PWM3_DIS	PWM2_DIS	PWM1_DIS	
	FW CTRL 1	0x0D	Reve	ersed	HB6_FW	HB5_FW	HB4_FW	HB3_FW	HB2_FW	HB1_FW	
	PWM_MAP_CTRL_1	0x0F	Reserved	Reserved		HB2_PWM_MAP			HB1_PWM_MAP		
Control	PWM_MAP_CTRL_2	0x10	Reserved	Reserved		HB4_PWM_MAP		HB3_PWM_MAP			
registers	PWM MAP CTRL 3	0x11	Reserved	Reserved		HB6_PWM_MAP			HB5_PWM_MAP		
	PWM_FREQ_CTRL1	0x13	PWM4	_FREQ	PWM3	B_FREQ	PWM2	_FREQ	PWM1	_FREQ	
	PWM_FREQ_CTRL2	0x14	PWM8	FREQ	PWM7	/_FREQ	PWM6	_FREQ	_FREQ PWM5_FREQ		
	<u>PWM DC CTRL1</u>	0x15				PWM1_DU	JTY_CYCLE				
	PWM_DC_CTRL2	0x16			*	PWM2_DU	JTY_CYCLE				
	PWM_DC_CTRL3	0x17				PWM3_DU	JTY_CYCLE				
	PWM DC CTRL4	0x18				PWM4_DU	JTY_CYCLE				
	PWM DC CTRL5	0x19				PWM5_DU	JTY_CYCLE				
	PWM_DC_CTRL6	0x1A				PWM6_DU	JTY_CYCLE				

Datasheet (EN) 1.0

1						*								
	PWM DC CTRL7	0x1B				PWM7_DUTY_CYCLE								
	<u>PWM_DC_CTRL8</u>	0x1C				PWM8_DUTY_CYCLE								
	HB_SR_CTRL_1	0x1D	Reve	ersed	HB6_SR	HB5_SR	HB4_SR	HB3_SR	HB2_SR	HB1_SR				
	HB_SR_CTRL_2	0x1E				Reversed								
	OPL_CTRL_1	0x1F	Reve	ersed	HB6_OPL_DIS	HB5_OPL_DIS	HB4_OPL_DIS	HB3_OPL_DIS	HB2_OPL_DIS	HB1_OPL_DIS				
	OPL OC CTRL 2	0x20	OPL_mask_FLT	OPL_HB_ACT	Reserved	OC_OFF_SR		reve	rsed					
	OPL OC CTRL 3	0x21		OC_FILTER		Reserved		reve	rsed					
	OPL_CTRL_4	0x22	Reve	ersed	HB6_OPL_TH	HB5_OPL_TH	HB4_OPL_TH	HB3_OPL_TH	HB2_OPL_TH	HB1_OPL_TH				
	OPL CTRL 5	0x23				Reve	ersed							
	OPL CTRL 6	0x24			Reversed									
	<u>GEN_CTRL_1</u>	0x25	SS_N	NOD	SS_DEV	RD_CLR_EN	unlock	SPI_ERR	Device	e_VER				
	OPL_CTRL_5	0x28	HB4_OFF_PU_ EN	HB4_OFF_PD_ EN	HB3_OFF_PU_ EN	HB3_OFF_PD_ EN	HB2_OFF_PU_ EN	HB2_OFF_PD_ EN	HB1_OFF_PU_ EN	HB1_OFF_PD_ EN				
	OPL_CTRL_6	0x29		Reve	ersed		HB6_OFF_PU_ EN	HB6_OFF_PD_ EN	HB5_OFF_PU_ EN	HB5_OFF_PD_ EN				
	OPL CTRL 8	0x2D	Reve	Reversed		HB5_IPUPD_M ODE	HB4_IPUPD_M ODE	HB3_IPUPD_M ODE	HB2_IPUPD_M ODE	HB1_IPUPD_M ODE				
	OPL_CTRL_9	0x2E	OCPH_CONF	VM_OVPH_CO NF	IDCH_CONF	TDEAD_MON_ EN		Reversed						

Datasheet (EN) 1.0

Register Name	Addre ss	Field Name	Туре	Bit Offset	Bit Width	Reset Value	Description
STA_0	0x0						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		OTSD	RLR	6	1	0x0	 0: No over temperature shutdown happen (default value) 1: over temperature shutdown detected. Error latched and all outputs disabled.
		OTWARN	RLR	5	1	0x0	0: No over temperature warning happen (default value)1: over temperature warning detected.
		OPL	RO	4	1	0x0	0: No open load detected (default value) 1: open load detected in at least one of power stages.
		OC	RO	3	1	0x0	0: No overcurrent detected (default value) 1: overcurrent detected in at least one of power stages. Error latched and corresponding outputs disabled.
		VM_UV	RLR	2	1	0x0	0: No VM undervoltage detected (default value) 1: VM undervoltage detected. Error latched and all outputs disabled.
		VM_OV	RLR	1	1	0x0	0: No VM overvoltage detected (default value) 1: VM overvoltage detected. Error latched and all outputs disabled.
		NPOR	RLR	0	1	0x0	0: POR due to VDD supply or EN (default value) 1: No POR
OC_STA_1	0x1						
		HB4_HS_OC	RLR	7	1	0x0	0: No overcurrent in HB4 high side detected (default value) 1: overcurrent detected in HB4 high side. Error latched, HB4 HS is disabled.
		HB4_LS_OC	RLR	6	1	0x0	0: No overcurrent in HB4 low side detected (default value) 1: overcurrent detected in HB4 low side. Error latched, HB4 LS is disabled.
		HB3_HS_OC	RLR	5	1	0x0	0: No overcurrent in HB3 high side detected (default value) 1: overcurrent detected in HB3 high side. Error latched, HB3 HS is disabled.
		HB3_LS_OC	RLR	4	1	0x0	0: No overcurrent in HB3 low side detected (default value) 1: overcurrent detected in HB3 low side. Error latched, HB3 LS is disabled.
		HB2_HS_OC	RLR	3	1	0x0	0: No overcurrent in HB2 high side detected (default value) 1: overcurrent detected in HB2 high side. Error latched, HB2 HS is disabled.
		HB2_LS_OC	RLR	2	1	0x0	0: No overcurrent in HB2 low side detected (default value) 1: overcurrent detected in HB2 low side. Error latched, HB2 LS is disabled.
		HB1_HS_OC	RLR	1	1	0x0	0: No overcurrent in HB1 high side detected (default value) 1: overcurrent detected in HB1 high side. Error latched, HB1 HS is disabled.

Datasheet (EN) 1.0

		HB1_LS_OC	RLR	0	1	0x0	0: No overcurrent in HB1 low side detected (default value) 1: overcurrent detected in HB1 low side . Error latched, HB1 LS is disabled.
OC_STA_2	0x2						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		Reserved	RO	6	1	0x0	0: reversed (default value).
		Reserved	RO	5	1	0x0	0: reversed (default value).
		Reserved	RO	4	1	0x0	0: reversed (default value).
		HB6_HS_OC	RLR	3	1	0x0	 0: No overcurrent in HB6 high side detected (default value) 1: overcurrent detected in HB6 high side . Error latched, HB6 HS is disabled.
		HB6_LS_OC	RLR	2	1	0x0	0: No overcurrent in HB6 low side detected (default value) 1: overcurrent detected in HB6 low side . Error latched, HB6 LS is disabled.
		HB5_HS_OC	RLR	1	1	0x0	0: No overcurrent in HB5 high side detected (default value) 1: overcurrent detected in HB5 high side . Error latched, HB5 HS is disabled.
		HB5_LS_OC	RLR	0	1	0x0	 0: No overcurrent in HB5 low side detected (default value) 1: overcurrent detected in HB5 low side . Error latched, HB5 LS is disabled.
OPL_STA_1	0x4						
		HB4_HS_OPL	RLR	7	1	0x0	0: No open load in HB4 high side detected (default value) 1: open load detected in HB4 high side . Error latched
		HB4_LS_OPL	RLR	6	1	0x0	0: No open load in HB4 low side detected (default value) 1: open load detected in HB4 low side . Error latched
		HB3_HS_OPL	RLR	5	1	0x0	0: No open load in HB3 high side detected (default value)1: open load detected in HB3 high side . Error latched
		HB3_LS_OPL	RLR	4	1	0x0	0: No open load in HB3 low side detected (default value) 1: open load detected in HB3 low side . Error latched
		HB2_HS_OPL	RLR	3	1	0x0	0: No open load in HB2 high side detected (default value)1: open load detected in HB2 high side . Error latched
		HB2_LS_OPL	RLR	2	1	0x0	0: No open load in HB2 low side detected (default value) 1: open load detected in HB2 low side . Error latched
		HB1_HS_OPL	RLR	1	1	0x0	0: No open load in HB1 high side detected (default value)1: open load detected in HB1 high side . Error latched
		HB1_LS_OPL	RLR	0	1	0x0	0: No open load in HB1 low side detected (default value) 1: open load detected in HB1 low side . Error latched

Copyright © 2021, NOVOSENSE

	1		1	1	1	1	
OPL_STA_2	0x5						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		Reserved	RO	6	1	0x0	0: reversed (default value).
		Reserved	RO	5	1	0x0	0: reversed (default value).
		Reserved	RO	4	1	0x0	0: reversed (default value).
		HB6_HS_OPL	RLR	3	1	0x0	0: No open load in HB6 high side detected (default value)1: open load detected in HB6 high side . Error latched
		HB6_LS_OPL	RLR	2	1	0x0	0: No open load in HB6 low side detected (default value) 1: open load detected in HB6 low side . Error latched
		HB5_HS_OPL	RLR	1	1	0x0	0: No open load in HB5 high side detected (default value) 1: open load detected in HB5 high side . Error latched
		HB5_LS_OPL	RLR	0	1	0x0	0: No open load in HB5 low side detected (default value) 1: open load detected in HB5 low side . Error latched
HB_STA_1	0x2B						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		Reserved	RO	6	1	0x0	0: reversed (default value).
		HB6_STA	RO	5	1	0x0	0: HB6 output voltage status low (<vth) 1: HB6 output voltage status high(>Vth)</vth)
		HB5_STA	RO	4	1	0x0	0: HB5 output voltage status low (<vth) 1: HB5 output voltage status high(>Vth)</vth)
		HB4_STA	RO	3	1	0x0	0: HB4 output voltage status low (<vth) 1: HB4 output voltage status high(>Vth)</vth)
		HB3_STA	RO	2	1	0x0	0: HB3 output voltage status low (<vth) 1: HB3 output voltage status high(>Vth)</vth)
		HB2_STA	RO	1	1	0x0	0: HB2 output voltage status low (<vth) 1: HB2 output voltage status high(>Vth)</vth)
		HB1_STA	RO	0	1	0x0	0: HB1 output voltage status low (<vth) 1: HB1 output voltage status high(>Vth)</vth)
GEN_CTRL_0	0x7						
		OFF_DIAG_CO MP_EN	RW	7	1	0x0	0: all half bridge OFF state diagnosis comparators are disabled, comparator output keeps default value 0 1: all half bridge OFF state diagnosis comparators are enabled
		DEVICE_ID	RO	4	3	by produ cts	100 = NSD8306 101 = NSD8306 110 = NSD8310 111 = NSD8312 others reversed

Datasheet (EN) 1.0

		OC_MASK_FL T	RW	3	1	0x0	0: overcurrent unmasked, reported on nfault, (default value) 1: overcurrent event is masked, not reported on nfault
		OTW_NMASK _FLT	RW	2	1	0x0	 0: overtemperature warning masked, not reported on nfault (default value) 1: overtemperature warning unmasked, reported on nfault
		OVP_H	RW	1	1	0x0	 0: VM overvoltage voltage threshold at 21v (default value) 1: Higher overvoltage protection threshold, VM up to 36v
		DIAG_CLR	wo	0	1	0x0	0: no action - clear all fault (default value) 1: Trigger action - clear all fault
HB_CTRL_1	0x8						
		HB4_HS_EN	RW	7	1	0x0	0: HB4 high side disabled (default value) 1: HB4 high side enabled
		HB4_LS_EN	RW	6	1	0x0	0: HB4 low side disabled (default value)1: HB4 low side enabled
		HB3_HS_EN	RW	5	1	0x0	0: HB3 high side disabled (default value)1: HB3 high side enabled
		HB3_LS_EN	RW	4	1	0x0	0: HB3 low side disabled (default value) 1: HB3 low side enabled
		HB2_HS_EN	RW	3	1	0x0	0: HB2 high side disabled (default value) 1: HB2 high side enabled
		HB2_LS_EN	RW	2	1	0x0	0: HB2 low side disabled (default value) 1: HB2 low side enabled
		HB1_HS_EN	RW	1	1	0x0	0: HB1 high side disabled (default value)1: HB1 high side enabled
		HB1_LS_EN	RW	0	1	0x0	0: HB1 low side disabled (default value) 1: HB1 low side enabled
HB_CTRL_2	0x9						
		Reserved	RW	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	6	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	5	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	4	1	0x0	0: reversed (default value). 1: not allowed
		HB6_HS_EN	RW	3	1	0x0	0: HB6 high side disabled (default value)1: HB6 high side enabled
		HB6_LS_EN	RW	2	1	0x0	0: HB6 low side disabled (default value)1: HB6 low side enabled
		HB5_HS_EN	RW	1	1	0x0	0: HB5 high side disabled (default value) 1: HB5 high side enabled

Datasheet (EN) 1.0

		HB5_LS_EN	RW	0	1	0x0	0: HB5 low side disabled (default value) 1: HB5 low side enabled
HB_PWM_CT RL1	0xB						
		Reserved	RW	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	6	1	0x0	0: reversed (default value). 1: not allowed
		HB6_PWM_E N	RW	5	1	0x0	0: HB6 operate in SPI ON/OFF mode (default value) 1: HB6 operate in PWM mode
		HB5_PWM_E N	RW	4	1	0x0	0: HB5 operate in SPI ON/OFF mode (default value) 1: HB5 operate in PWM mode
		HB4_PWM_E N	RW	3	1	0x0	0: HB4 operate in SPI ON/OFF mode (default value) 1: HB4 operate in PWM mode
		HB3_PWM_E N	RW	2	1	0x0	0: HB3 operate in SPI ON/OFF mode (default value) 1: HB3 operate in PWM mode
		HB2_PWM_E N	RW	1	1	0x0	0: HB2 operate in SPI ON/OFF mode (default value) 1: HB2 operate in PWM mode
		HB1_PWM_E N	RW	0	1	0x0	0: HB1 operate in SPI ON/OFF mode (default value) 1: HB1 operate in PWM mode
HB_PWM_CT RL2	0xC						
		PWM8_DIS	RW	7	1	0x0	0: PWM8 enable (default value) 1: PWM8 disable
		PWM7_DIS	RW	6	1	0x0	0: PWM7 enable (default value) 1: PWM7 disable
		PWM6_DIS	RW	5	1	0x0	0: PWM6 enable (default value) 1: PWM6 disable
		PWM5_DIS	RW	4	1	0x0	0: PWM5 enable (default value) 1: PWM5 disable
		PWM4_DIS	RW	3	1	0x0	0: PWM4 enable (default value) 1: PWM4 disable
		PWM3_DIS	RW	2	1	0x0	0: PWM3 enable (default value) 1: PWM3 disable
		PWM2_DIS	RW	1	1	0x0	0: PWM2 enable (default value) 1: PWM2 disable
		PWM1_DIS	RW	0	1	0x0	0: PWM1 enable (default value) 1: PWM1 disable
FW_CTRL_1	0xD						
		Reserved	RW	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	6	1	0x0	0: reversed (default value). 1: not allowed

		HB6_FW	RW	5	1	0x0	0: HB6 operate in passive free-wheeling (default value)
		HB5 FW	RW	4	1	0x0	 HB6 operate in active free-wheeling HB5 operate in passive free-wheeling (default value)
			DW	2	1	0.0	1: HB5 operate in active free-wheeling 0: HB4 operate in passive free-wheeling (default
		HB4_FW	RW	3	1	UxU	value) 1: HB4 operate in active free-wheeling 0: HB2 operate in passive free wheeling (default)
		HB3_FW	RW	2	1	0x0	value) 1: HB3 operate in active free-wheeling
		HB2_FW	RW	1	1	0x0	0: HB2 operate in passive free-wheeling (default value)1: HB2 operate in active free-wheeling
		HB1_FW	RW	0	1	0x0	0: HB1 operate in passive free-wheeling (default value)1: HB1 operate in active free-wheeling
PWM_MAP_C TRL_1	0xF						
		Reserved	RW	7	1	0x0	Reserved
		Reserved	RW	6	1	0x0	Reserved
		HB2_PWM_M AP	RW	3	3	0x0	HB2 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8
		HB1_PWM_M AP	RW	0	3	0x0	HB1 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8
PWM_MAP_C TRL_2	0x10						
		Reserved	RW	6	2	0x00	00: reserved
		HB4_PWM_M AP	RW	3	3	0x0	HB4 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8

		HB3_PWM_M AP	RW	0	3	0x0	HB3 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8
PWM_MAP_C	0x11						
		Reserved	RW	7	1	0x0	Reserved
		Reserved	RW	6	1	0x0	Reserved
		HB6_PWM_M AP	RW	3	3	0x0	HB6 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8
		HB5_PWM_M AP	RW	0	3	0x0	HB5 PWM MAP configuration 000: PWM1 (default value) 001: PWM2 010: PWM3 011: PWM4 100: PWM5 101: PWM6 110: PWM7 111: PWM8
PWM_FREQ_ CTRL1	0x13						
		PWM4_FREQ	RW	6	2	0x0	PWM4 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz
		PWM3_FREQ	RW	4	2	0x0	PWM3 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz
		PWM2_FREQ	RW	2	2	0x0	PWM2 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz

Datasheet (EN) 1.0

		PWM1_FREQ	RW	0	2	0x0	PWM1 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz
PWM_FREQ_ CTRL2	0x14						
		Reserved	RW	7-6	2	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	5-4	2	0x0	0: reversed (default value). 1: not allowed
		PWM6_FREQ	RW	3-2	2	0x0	PWM6 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz
		PWM5_FREQ	RW	1-0	2	0x0	PWM5 frequency configuration 00: 80Hz (default value) 01: 100Hz 10: 200Hz 11: 2kHz
PWM_DC_CT RL1	0x15						
		PWM1_DUTY CYCLE	RW	0	8	0x0	PWM1 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT	0x16	-					
		PWM2_DUTY CYCLE	RW	0	8	0x0	PWM2 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL3	0x17						
		PWM3_DUTY _CYCLE	RW	0	8	0x0	PWM3 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL4	0x18						
		PWM4_DUTY _CYCLE	RW	0	8	0x0	PWM4 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL5	0x19						
		PWM5_DUTY _CYCLE	RW	0	8	0x0	PWM5 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL6	0x1A						
		PWM6_DUTY _CYCLE	RW	0	8	0x0	PWM6 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL7	0x1B						

Copyright © 2021, NOVOSENSE

		PWM7_DUTY CYCLE	RW	0	8	0x0	PWM7 duty cycle calculation = 100% * BIT value /255
PWM_DC_CT RL8	0x1C	_					
		PWM8_DUTY CYCLE	RW	0	8	0x0	PWM8 duty cycle calculation = 100% * BIT value /255
HB_SR_CTRL_ 1	0x1D						
		Reserved	RW	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	6	1	0x0	0: reversed (default value). 1: not allowed
		HB6_SR	RW	5	1	0x0	 0: HB6 power stage output rise / fall slew rate 0.6 V/us 1: HB6 power stage output rise / fall slew rate 2.5 V/us
		HB5_SR	RW	4	1	0x0	 0: HB5 power stage output rise / fall slew rate 0.6 V/us 1: HB5 power stage output rise / fall slew rate 2.5 V/us
		HB4_SR	RW	3	1	0x0	0: HB4 power stage output rise / fall slew rate 0.6 V/us 1: HB4 power stage output rise / fall slew rate 2.5 V/us
		HB3_SR	RW	2	1	0x0	 0: HB3 power stage output rise / fall slew rate 0.6 V/us 1: HB3 power stage output rise / fall slew rate 2.5 V/us
		HB2_SR	RW	1	1	0x0	 0: HB2 power stage output rise / fall slew rate 0.6 V/us 1: HB2 power stage output rise / fall slew rate 2.5 V/us
		HB1_SR	RW	0	1	0x0	 0: HB1 power stage output rise / fall slew rate 0.6 V/us 1: HB1 power stage output rise / fall slew rate 2.5 V/us
OPL_CTRL_1	0x1F						
		Reserved	RW	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	6	1	0x0	0: reversed (default value). 1: not allowed
		HB6_OPL_DIS	RW	5	1	0x0	0: HB6 active open load enable 1: HB6 active open load disable
		HB5_OPL_DIS	RW	4	1	0x0	0: HB5 active open load enable 1: HB5 active open load disable
		HB4_OPL_DIS	RW	3	1	0x0	0: HB4 active open load enable 1: HB4 active open load disable
		HB3_OPL_DIS	RW	2	1	0x0	0: HB3 active open load enable 1: HB3 active open load disable
		HB2_OPL_DIS	RW	1	1	0x0	0: HB2 active open load enable 1: HB2 active open load disable

		HB1_OPL_DIS	RW	0	1	0x0	0: HB1 active open load enable 1: HB1 active open load disable
OPL_OC_CTRL	0x20						
		OPL_mask_FL T	RW	7	1	0x0	0: open load unmasked, reported on nfault, (default value) 1: open load event is masked, not reported on nfault
		OPL_HB_ACT	RW	6	1	0x0	11
		Reserved	RW	5	1	0x0	0: reversed
		OC_OFF_SR	RW	4	1	0x0	0: OCP event fast turn off slew rate (default value) 1: OCP event slow turn off slew rate
		Reserved	RW	3	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	2	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	1	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RW	0	1	0x0	0: reversed (default value). 1: not allowed
OPL_OC_CTRL _3	0x21						
		OC_FILTER	RW	5	3	0x0	OCP deglitch filter timing 000: 10us 001: 5us 010: 2.5us 011: 1us 100: 60us 101: 40us 110: 30us 111: 20us
		Reserved	RW	4	1	0x0	Reserved, '0' shall be used
		Reserved	RO	3	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RO	2	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RO	1	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RO	0	1	0x0	0: reversed (default value). 1: not allowed
OPL_CTRL_4	0x22						
		Reserved	RO	7	1	0x0	0: reversed (default value). 1: not allowed
		Reserved	RO	6	1	0x0	0: reversed (default value). 1: not allowed
		HB6_OPL_TH	RW	5	1	0x0	0: HB6 active open load normal threshold and long open load filter used

							1: HB6 active open load low threshold and short open
							load filter used
		HB5_OPL_TH	RW	4	1	0x0	0: HB5 active open load normal threshold and long open load filter used 1: HB5 active open load low threshold and short open load filter used
		HB4_OPL_TH	RW	3	1	0x0	0: HB4 active open load normal threshold and long open load filter used1: HB4 active open load low threshold and short open load filter used
		HB3_OPL_TH	RW	2	1	0x0	0: HB3 active open load normal threshold and long open load filter used 1: HB3 active open load low threshold and short open load filter used
		HB2_OPL_TH	RW	1	1	0x0	0: HB2 active open load normal threshold and long open load filter used 1: HB2 active open load low threshold and short open load filter used
		HB1_OPL_TH	RW	0	1	0x0	0: HB1 active open load normal threshold and long open load filter used 1: HB1 active open load low threshold and short open load filter used
Reversed	0x23						
		Reserved	RW	7	1	0x0	0: reversed
		0	RW	6	1	0x0	0: reversed
		0	RW	5	1	0x0	0: reversed
		0	RW	4	1	0x0	0: reversed
		0	RW	3	1	0x0	0: reversed
		0	RW	2	1	0x0	0: reversed
		0	RW	1	1	0x0	0: reversed
		0	RW	0	1	0x0	0: reversed
Reversed	0x24						
		Reserved	RW	7	1	0x0	0: reversed
		0	RW	6	1	0x0	0: reversed
		0	RW	5	1	0x0	0: reversed
		0	RW	4	1	0x0	0: reversed
		0	RW	3	1	0x0	0: reversed
		0	RW	2	1	0x0	0: reversed
		0	RW	1	1	0x0	0: reversed
		0	RW	0	1	0x0	0: reversed
GEN_CTRL_1	0x25						
		ss_mod	RW	6	2	0x00	spread spectrum configuration 00: disable spread spectrum 01: modulation freq 15.625 kHz 10: modulation freq 31.25 kHz 11: modulation freq 62.5 kHz
		SS_DEV	RW	5	1	0x0	0: modulation deviation 5% (typ) 1: modulation deviation 10% (typ)

		RD_CLR_EN	RW	4	1	0x0	0: SPI read clear diagnosis flag disable 1: SPI read clear diagnosis flag enable
		unlock	RW	3	1	0x0	0: OPL_CTRL_9 address 0x2E register bit 7~bit4 (OCPH_CONF, VM_OVPH_CONF, IDCH_CONF, TDEAD_MON_EN) 4 bits are in lock, write operation is ignored 1. OPL_CTRL_9 address 0x2E register bit 7~bit4 (OCPH_CONF, VM_OVPH_CONF, IDCH_CONF, TDEAD_MON_EN) 4 bits are unlock, write operation is available.
		SPI_ERR	RLR	2	1	0x0	0: No SPI protocol error is detected (default value). 1: An SPI protocol error is detected.
		Device_VER	RO	0	2	0x01	00: reserved 01: version AA 10: reserved 11: reserved
OPL_CTRL_5	0x28						
		HB4_OFF_PU _ ^{EN}	RW	7	1	0x0	0: HB4 off state open load pull up current disabled 1: HB4 off state open load pull up current enabled
		HB4_OFF_PD_ EN	RW	6	1	0x0	0: HB4 off state open load pull down current disabled 1: HB4 off state open load pull down current enabled
		HB3_OFF_PU _EN	RW	5	1	0x0	0: HB3 off state open load pull up current disabled 1: HB3 off state open load pull up current enabled
		HB3_OFF_PD_ EN	RW	4	1	0x0	0: HB3 off state open load pull down current disabled 1: HB3 off state open load pull down current enabled
		HB2_OFF_PU _EN	RW	3	1	0x0	0: HB2 off state open load pull up current disabled 1: HB2 off state open load pull up current enabled
		HB2_OFF_PD_ EN	RW	2	1	0x0	0: HB2 off state open load pull down current disabled 1: HB2 off state open load pull down current enabled
		HB1_OFF_PU _EN	RW	1	1	0x0	0: HB1 off state open load pull up current disabled 1: HB1 off state open load pull up current enabled
		HB1_OFF_PD_ EN	RW	0	1	0x0	0: HB1 off state open load pull down current disabled 1: HB1 off state open load pull down current enabled
OPL_CTRL_6	0x29						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		Reserved	RO	6	1	0x0	0: reversed (default value).
		Reserved	RO	5	1	0x0	0: reversed (default value).
		Reserved	RO	4	1	0x0	0: reversed (default value).
		HB6_OFF_PU _EN	RW	3	1	0x0	0: HB6 off state open load pull up current disabled 1: HB6 off state open load pull up current enabled

Datasheet (EN) 1.0

		HB6_OFF_PD_ EN	RW	2	1	0x0	0: HB6 off state open load pull down current disabled 1: HB6 off state open load pull down current enabled
		HB5_OFF_PU _EN	RW	1	1	0x0	0: HB5 off state open load pull up current disabled 1: HB5 off state open load pull up current enabled
		HB5_OFF_PD_ EN	RW	0	1	0x0	0: HB5 off state open load pull down current disabled 1: HB5 off state open load pull down current enabled
OPL_CTRL_8	0x2D						
		Reserved	RO	7	1	0x0	0: reversed (default value).
		Reserved	RO	6	1	0x0	0: reversed (default value).
		HB6_IPUPD_ MODE	RW	5	1	0x0	0: HB6 off diag fast charge current disable (low pull up / pull down current)1: HB6 off diag fast charge current enable
		HB5_IPUPD_ MODE	RW	4	1	0x0	0: HB5 off diag fast charge current disable (low pull up / pull down current)1: HB5 off diag fast charge current enable
		HB4_IPUPD_ MODE	RW	3	1	0x0	0: HB4 off diag fast charge current disable (low pull up / pull down current)1: HB4 off diag fast charge current enable
		HB3_IPUPD_ MODE	RW	2	1	0x0	 0: HB3 off diag fast charge current disable (low pull up / pull down current) 1: HB3 off diag fast charge current enable
		HB2_IPUPD_ MODE	RW	1	1	0x0	 0: HB2 off diag fast charge current disable (low pull up / pull down current) 1: HB2 off diag fast charge current enable
		HB1_IPUPD_ MODE	RW	0	1	0x0	 0: HB1 off diag fast charge current disable (low pull up / pull down current) 1: HB1 off diag fast charge current enable
OPL_CTRL_9	0x2E						
		OCPH_CONF	RW	7	1	0x0	0: OCP threshold typ 1.3A 1: OCP threshold typ 1.7A
		VM_OVPH_C ONF	RW	6	1	0x0	0: OVPH threshold typ 31v1: OVPH threshold typ 37V
		IDCH_CONF	RW	5	1	0x0	configure HS and LS discharge pull down current level 0: pull down current level normal 1: pull down current level high
		TDEAD_MON _ ^{EN}	RW	4	1	0x1	0: Tdead is determined by internal fixed timing1: Tdead is determined by internal feedback signal
		Reserved	RO	3	1	0x0	0: reversed (default value).
		Reserved	RO	2	1	0x0	0: reversed (default value).
		Reserved	RO	1	1	0x0	0: reversed (default value).
		Reserved	RO	0	1	0x0	0: reversed (default value).

8. Application information

8.1. Application diagram

Figure 4. Typical application connection

9. Package information

9.1. HTSSOP24 package information

SYMBOL	MIN	NOM	MAX					
A	-	-	1.20					
A1	0.05	-	0.15					
A2	0.80	0.90	1.00					
A3	0.34	0.39	0.44					
b	0.20	-	0.29					
b1	0.19	0.22	0.25					
с	0.10	-	0.19					
c1	0.10	0.13	0.15					
D	7.70	7.80	7.90					
D1	4.60REF							
E	6.20	6.40	6.60					
E1	4.30	4.40	4.50					
E2	2.85REF							
e	0.55	0.65	0.75					
L	0.45	0.60	0.75					
L1		1.00REF						
L2		0.25BSC						
R	0.09	-	-					
R1	0.09	-	-					
S	0.20	-	_					
θ1	0°	-	8"					
θ2	12*	14*	16*					
θ.3	12*	14°	16*					

COMMON DIMENSIONS

WITH PLATING

NOTES: 1.ALL DIMENSIONS REFER TO JEDEC STANDARD MO-153 ADT DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. 2. 'D1' AND 'E2' ARE VARIABLES DEPENDING ON DIE PAD SIZES.

9.2. HTSSOP24 packaging information

NOTES: 1.MATERIAL:Black conductive polystyrene 2.ALL DIMS IN MM

10. Revision History

Revision	Description	Date
1.0	Initial version	2021/11/5