NPH770215Q

Automotive Dual Channel $15 \mathrm{~m} \Omega$ Smart High－Side Driver

Revision	Date	Description
Rel 1．0	10 October 2023	Preliminary release．

1. Features

- Compliant with AEC-Q100
- Dual channel high side driver with integrated current sense feedback
- Operation voltage range: 4~28V AMR 40V
- On resistance:
- $14.7 \mathrm{~m} \Omega$ (Typ, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)
- $24.7 \mathrm{~m} \Omega$ (Typ, $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$)
- DC load current IL(Nom): 5A (Typ)
- Overcurrent limit: 40A (Typ)
- Very low standby current consumption: $0.1 \mu \mathrm{~A}$ (Max)
- Support down to 2.85 V VCC during cold crank
- $3 \mathrm{~V} / 5 \mathrm{~V}$ CMOS compatible input
- Multiple diagnostics through CS pin
- High accuracy analog output proportional to loading current
- Over load and output short to ground alarm
- Open load diagnostic in OFF state
- Output short to VCC detection
- Support CS output enable/disable
- Protections
- V_{cc} undervoltage shutdown
- VDS clamp for protection of inductive load
- Thermal shutdown
- Overcurrent protection
- Dynamic overtemperature protection
- Output latch/hiccup through the FaultRST pin
- Loss of ground and loss of Vcc protection
- Battery reverse insertion protection
- ESD protection
- Package: SSOP16PP

2. Applications

- All types of automotive resistive, inductive and capacitive loads
- Power supply protection in ADAS: radar and sensors
- Automotive headlamps

3. Description

NPH770215Q is an automotive dual channel smart high side driver. It features $3 \mathrm{~V} / 5 \mathrm{~V}$ CMOS compatible input control interface and two independent power output channels. It can also provide smart protections and diagnostics. NPH770215Q is extensively used in 12 V automotive power supply systems.
NPH770215Q integrates advanced protection functions, including overcurrent protection, dynamic overtemperature protection, and output latch/hiccup function though the FaultRST pin when thermal shutdown or overcurrent event occurs.

NPH770215Q also integrates multiplexed analog output through the CS pin to provide complex diagnostic functions, including accurate analog output proportional to loading current, over load, and output short to ground alarms, output short to Vcc, and open load detection in OFF state.

The SEn pin of NPH770215Q provides the function of enable/disable diagnostic functions in OFF state, which can be used to obtain low power consumption if disabled. When multiple NPH770215Q devices are used in one system, the SEn pin can also be used to achieve sampling CS voltage through one single ADC channel of MCU by paralleling CS outputs of multiple NPH770215Q devices, which greatly reduces system cost.

NPH770215Q supports the SSOP16PP package. See Table 1 for the order information.

Table 1. Order Information

Order Number	Package	Mark	CH (\#)	$V_{c c}$ (V)	Rdson (m)	$I_{\text {standby }}$ (Max) ($\mu \mathrm{A}$)	$\mathrm{l}_{\text {limit }}(\mathrm{A})$	Rating	Pkg. Option
NPH770215QASSOP16P	SSOP16PP	H770215Q	2	4-28	14.7	0.1	40	Auto	T/R-3000

4. Pin Configuration and Functions

Figure 1 illustrates the pin configuration.

INPUT0	16	\square OUTPUTO
FaultRST	$2 \mathrm{I}^{---7} 15$	$ص$ OUTPUTO
SEn	3 1 14	\square OUTPUTO
GND	4 1 \| 13	$ص$ OUTPUTO
SELO -	5 1 \| 12	\square OUTPUT1
NC	$6 \quad \mid 11$	\square OUTPUT1
CS	7 L _ _ 10	\square OUTPUT1
PUT1	8 9	\square OUTPUT1

Figure 1. Pin Configuration
Table 2 lists the pin functions.
Table 2. Pin Functions

Position	Name	Type	Description
1	INPUT0	Input	Voltage controlled input pin with hysteresis, compatible with 3V and 5V CMOS outputs. It controls output switch state.
2	FaultRST	Input	Active low compatible with 3V and 5V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.
3	Sen	Input	Active high compatible with 3V and 5V CMOS outputs pin; it enables the CS diagnostic pin.
4	GND	Ground	Ground connection. Must be reverse battery protected by an external diode / resistor network.
5	SEL0	Input	Active high compatible with 3V and 5V CMOS outputs pin; they address the CS multiplexer.
6	NC	---	Not connect for this pin.
7	CS	Output	Analog current sense output pin. It delivers a current proportional to the load current.
8	INPUT1	Input	Voltage controlled input pin with hysteresis, compatible with 3V and 5V CMOS outputs. It controls output switch state.
$9-12$	OUTPUT1	Output	Power outputs. All the pins must be connected together.
$13-16$	OUTPUT0	Output	Power outputs. All the pins must be connected together.
--	VCC	Power	Battery connection

5. Specifications

5.1 Absolute Maximum Ratings

Table 3 lists the absolute maximum ratings of the NPH770215Q.
Table 3. Absolute Maximum Ratings

Parameter	Description	Min	Max	Units
Voltage	DC supply voltage, V_{CC}		38	V
	Reverse DC supply voltage, $-\mathrm{V}_{\mathrm{cc}}$		0.3	V
	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to $40 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$), $\mathrm{V}_{\mathrm{CCPK}}$		40	V
	Maximum jump start voltage for single pulse short circuit protection, $V_{\text {coJs }}$		28	V
Current	DC reverse ground pin current, $-l_{\text {GND }}$		200	mA
	OUTPUT DC output current, Iout		Internally limited	A
	Reverse DC output current, -lout		TBD	A
	INPUT DC input current, $\mathrm{IN}^{\text {N }}$	-1	10	mA
	SEn DC input current, Isen	-1	10	mA
	SELO DC input current, ISEL	-1	10	mA
	FaultRST DC input current, $\mathrm{I}_{\text {FR }}$	-1	1.5	mA
	CS pin DC output current ($\mathrm{V}_{\text {GND }}=\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {SENSE }}<0 \mathrm{~V}$), $\mathrm{I}_{\text {SENSE }}$		10	mA
	CS pin DC output current in reverse ($\mathrm{V}_{\text {CC }}<0 \mathrm{~V}$), $\mathrm{I}_{\text {SENSE }}$		-20	mA
	Maximum switching energy (single pulse) ($\mathrm{T}_{\text {DEMAG }}=0.4 \mathrm{~ms} ; \mathrm{T}_{\text {JSTART }}=$ $150^{\circ} \mathrm{C}$), $\mathrm{E}_{\text {max }}$		TBD	mJ
Temperature	Junction, T_{J}	-40	150	${ }^{\circ} \mathrm{C}$
	Storage, $\mathrm{T}_{\text {stg }}$	-55	150	${ }^{\circ} \mathrm{C}$

Note: Stresses beyond those listed under Table 3 may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Table 5. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

Table 4 lists the ESD ratings of the NPH770215Q.
Table 4. ESD Ratings

Parameter	Symbol		Description	Value
Electrostatic Discharge	$\mathrm{V}_{(\text {ESD })}$	Units		
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ${ }^{(2)}$	± 8000	

Note 1: The JEDEC document JEP155 indicates that 500 V HBM allows safe manufacturing with a standard ESD control process.

Note 2: The JEDEC document JEP157 indicates that 250 V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

Table 5 lists the recommended operating conditions for the NPH770215Q.
Table 5. Recommended Operating Conditions

Parameter	Description	Symbol	Min	Nom	Max	Units
Power Supply						
Power Supply			4		28	V
Digital Inputs						
Digital Input Voltage		$\mathrm{V}_{\text {DIG }}$	0		5.5	V
Temperature Range						
Operating Ambient Temperature		$\mathrm{T}_{\text {A }}$	-40		125	${ }^{\circ} \mathrm{C}$

5.4 Thermal Information

Table 6 lists the thermal information for the NPH770215Q.
Table 6. Thermal Information

Parameter	Symbol	SSOP16PP	Units
Junction-to-Ambient Thermal Resistance	$R_{\text {өJA }}$	28.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Board Thermal Resistance	$R_{\text {өJB }}$	13.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Top Characterization Parameter	$\Psi_{\text {JT }}$	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Board Characterization Parameter	$\Psi_{\text {JB }}$	9.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case (Top) Thermal Resistance	$R_{\text {өJC (top) }}$	21.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5.5 Electrical Characteristics

Table 7 lists the electrical characteristics of the NPH770215Q. $7 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<28 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$, unless otherwise specified. All typical values refer to $\mathrm{V}_{\mathrm{cc}}=13 \mathrm{~V} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 7. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typ	Max	Units
During Cranking						
Minimum Cranking Supply Voltage (V_{cc} Decreasing)	VUsD_Cranking				2.85	V
Power						
Operating Supply Voltage	V_{cc}		4	13	28	v
Undervoltage Shutdown	$\mathrm{V}_{\text {Usd }}$				2.85	v
Undervoltage Shutdown Reset	$\mathrm{V}_{\text {USDReset }}$				5	V
Undervoltage Shutdown Hysteresis	$V_{\text {UsDhyst }}$			1.25		V
On-State Resistance ${ }^{(1)}$	Ron	$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C}$		14.4		$\mathrm{m} \Omega$
		$\mathrm{l}_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$			28.0	
		$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{V}_{\text {CC }}=7 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (2)			18.0	
Nominal Load Current Per Channel (2 channel active)	$\mathrm{L}_{\text {(NOM }}$	$\mathrm{T}_{J}<150^{\circ} \mathrm{C}^{(3)}$		5		A
Supply Current in Standby at $\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V}^{(4)}$	$\mathrm{I}_{\text {stby }}$	$\begin{aligned} & V_{\text {CC }}=13 \mathrm{~V} ; \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {FR }}=\mathrm{V}_{\text {SEn }}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		0.01	0.1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {CC }}=13 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {FR }}=\mathrm{V}_{\text {SE }}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}^{(5)} \end{aligned}$			TBD	
		$\begin{aligned} & V_{\text {CC }}=13 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {FR }}=\mathrm{V}_{\text {SEn }}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$			3	
Standby Mode Blanking Time	to_stby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{FR}}=\mathrm{V}_{\mathrm{SELLO}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} \text { to } 0 \mathrm{~V} \end{aligned}$	510	650	760	$\mu \mathrm{s}$
Supply Current	$\mathrm{I}_{\text {SON }}$	$\begin{aligned} & V_{C C}=13 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=\mathrm{V}_{\text {FR }}=\mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{V}_{\text {INO }} \\ & =5 \mathrm{~V} ; \mathrm{V}_{\text {IN } 1}=5 \mathrm{~V} ; \text { louto }=0 \mathrm{~A} ; \text { IoUT } 1=0 \mathrm{~A} \end{aligned}$		3.7	5.0	mA
Control Stage Current Consumption in ON State. All Channels Active.	$\mathrm{I}_{\text {Gnd(on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{FR}}=\mathrm{V}_{\mathrm{SEL} 0}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN} 0}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN} 1}=5 \mathrm{~V} ; \text { I OUTO } 0=3 \mathrm{~A} ; \mathrm{I}_{\text {OUT } 1}= \\ & 3 \mathrm{~A} \end{aligned}$			6.0	mA
Off-State Output Current at $\mathrm{V}_{\mathrm{cc}}=13 \mathrm{~V}^{(4)}$	$I_{L(\text { (ff) }}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {OUT }}=0 \mathrm{~V} ; \text { SEn }=0 ; V_{C C}=13 \mathrm{~V} ; \mathrm{T}_{J} \\ & =25^{\circ} \mathrm{C} \end{aligned}$		0.15	0.5	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {IN }}=V_{\text {OUT }}=0 \mathrm{~V} ; \text { SEn }=0 ; V_{C C}=13 \mathrm{~V} ; \mathrm{T}_{J} \\ & =125^{\circ} \mathrm{C} \end{aligned}$			3	
Output - $\mathrm{V}_{\text {cc }}$ Diode Voltage at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	V_{F}	$\mathrm{I}_{\text {OUT }}=-3 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$		TBD		V
Switching ($\mathrm{V}_{\mathrm{cc}}=13 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$, Unless Otherwise Specified)						
Turn-On Delay Time at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (6)	$\mathrm{t}_{\text {d(on) }}$	$\mathrm{R}_{\mathrm{L}}=4.3 \Omega$	35	65	95	$\mu \mathrm{s}$
Turn-Off Delay Time at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}{ }^{(6)}$	$\mathrm{t}_{\text {d(off) }}$		20	60	100	
Turn-On Voltage Slope at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}^{(6)}$	($\left.\mathrm{dV}_{\text {out }} / \mathrm{dt}\right)_{\text {on }}$	$\mathrm{R}_{\mathrm{L}}=4.3 \Omega$	0.06	0.20	0.4	V/us
Turn-Off Voltage Slope at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (6)	($\left.\mathrm{dV}_{\text {out }} / \mathrm{dtt}\right)_{\text {off }}$		0.15	0.38	0.6	
Switching Energy Losses at Turn-On 1 ($\mathrm{t}_{\text {won }}$)	Won	$\mathrm{R}_{\mathrm{L}}=4.3 \Omega$	---	0.5	$0.9{ }^{(7)}$	mJ
Switching Energy Losses at Turn-Off ($\mathrm{t}_{\text {woff }}$)	$\mathrm{W}_{\text {OFF }}$	$R_{L}=4.3 \Omega$	---	0.25	$0.5{ }^{(7)}$	mJ

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Differential Pulse Skew ($\left.\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right)^{(6)}$	$\mathrm{tskew}^{\text {d }}$	$R_{L}=4.3 \Omega$	-110	-25	55	$\mu \mathrm{s}$
Logic Inputs ($7 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<28 \mathrm{~V}$; $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$)						
INPUTO/1 Characteristics						
Input Low Level Voltage	VIL				0.9	V
Low Level Input Current	$1 / L$	$\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$	0.8			$\mu \mathrm{A}$
Input High Level Voltage	V_{HH}		2.1			V
High Level Input Current	I_{H}	$\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V}$			10	$\mu \mathrm{A}$
Input Hysteresis Voltage	$\mathrm{V}_{\text {Ifyst) }}$		0.15			V

$\overline{\text { FaultRST }}$ Characteristics					
Input Low Level Voltage	$\mathrm{V}_{\text {FRL }}$			0.9	V
Low Level Input Current	$\mathrm{I}_{\text {frL }}$	$\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$	0.8		$\mu \mathrm{A}$
Input High Level Voltage	$\mathrm{V}_{\text {FRH }}$		2.1		V
High Level Input Current	Ifrh	$\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V}$		10	$\mu \mathrm{A}$
Input Hysteresis Voltage	$\mathrm{V}_{\text {FR(hyst) }}$		0.15		V

SELO Characteristics ($7 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<18 \mathrm{~V}$)

Input Low Level Voltage	$\mathrm{V}_{\text {SELL }}$				0.9	V
Low Level Input Current	$\mathrm{I}_{\text {SELL }}$	$\mathrm{V}_{\text {IN }}=0.9 \mathrm{~V}$	0.8			$\mu \mathrm{~A}$
Input High Level Voltage	$\mathrm{V}_{\text {SELH }}$		2.1			V
High Level Input Current	$\mathrm{I}_{\text {SELH }}$	$\mathrm{V}_{\text {IN }}=2.1 \mathrm{~V}$			10	$\mu \mathrm{~A}$
Input Hysteresis Voltage	$\mathrm{V}_{\text {SELhyst) }}$		0.15			V

SEn Characteristics ($7 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<18 \mathrm{~V}$)

Input Low Level Voltage	$\mathrm{V}_{\text {SEnL }}$				0.9	V
Low Level Input Current	$\mathrm{I}_{\text {SEnL }}$	$\mathrm{V}_{\mathbb{N}}=0.9 \mathrm{~V}$	0.8			$\mu \mathrm{~A}$
Input High Level Voltage	$\mathrm{V}_{\text {SEnH }}$		2.1			V
High Level Input Current	$\mathrm{I}_{\text {SEnH }}$	$\mathrm{V}_{\mathbb{N}}=2.1 \mathrm{~V}$			10	$\mu \mathrm{~A}$
Input Hysteresis Voltage	$\mathrm{V}_{\text {SEn(hyst) }}$		0.15			V

Protections (7V $<\mathrm{Vcc}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$)

DC Short-Circuit Current	ILIMH	$\mathrm{V}_{C C}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	40	50	A
		$\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	25	35	45	
		$4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<18 \mathrm{~V}^{(7)}$			53	
Short-Circuit Current During Thermal Cycling	ILIML	$\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{R}}<\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\text {TSD }}$		25		
Shutdown Temperature	$\mathrm{T}_{\text {TSD }}$		155	175	195	${ }^{\circ} \mathrm{C}$
Reset Temperature ${ }^{(7)}$	TR			$\begin{gathered} \hline \mathrm{T}_{\mathrm{TSD}} \\ - \\ 10 \end{gathered}$		
Thermal Reset of Fault Diagnostic Indication	$\mathrm{T}_{\text {RS }}$	$\mathrm{V}_{\mathrm{FR}}=0 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$		135		
Thermal Hysteresis (T TSD $\left.-\mathrm{T}_{\mathrm{R}}\right)^{(7)}$	$\mathrm{T}_{\text {HYSt }}$			10		
Dynamic Temperature	$\Delta \mathrm{T}_{\text {J_S }}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=13 \mathrm{~V}$		60		${ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Fault Reset Time for Output Unlatch ${ }^{(7)}$	tLATCH_RST	$\mathrm{V}_{\mathrm{FR}}=5 \mathrm{~V}$ to 0 V within 2 ms after fault occurs; $\mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V}$		2		ms
		$\mathrm{V}_{\mathrm{FR}}=5 \mathrm{~V}$ to 0 V longer than 2 ms after fault occurs; $\mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$; $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$; $\mathrm{V}_{\text {SELO }}=$ OV		50		us
Turn-Off Output Voltage Clamp	$V_{\text {demag }}$	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} ; \mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 46 \end{gathered}$			V
		l $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 46 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 45 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 38 \end{gathered}$	V
Current Sense (7V $<\mathrm{V}_{\mathrm{cc}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$)						
Current Sense Clamp Voltage	$\mathrm{V}_{\text {SENSE_CL }}$	$\mathrm{V}_{\text {SEn }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SENSE }}=1 \mathrm{~mA}$	-10.0	-9.3		V
		$\mathrm{V}_{\text {SEn }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SENSE }}=-1 \mathrm{~mA}$		5.1		
Current Sense Characteristics						
$\mathrm{l}_{\text {OUT }} / \mathrm{I}_{\text {SENSE }}$	K_{0}	$\begin{aligned} & \text { lout }=0.1 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}} \\ & =25 \mathrm{C} \end{aligned}$	2750	2900	3050	
Current Sense Ratio Drift ${ }^{(5)(8)}$	$\mathrm{dK}_{0} / \mathrm{K}_{0}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0.1 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}} \\ & =-40 \sim 150 \mathrm{C} \end{aligned}$	-12		12	\%
$\mathrm{l}_{\text {OUT }} / \mathrm{I}_{\text {SENSE }}$	K_{1}	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=0.25 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C} \end{aligned}$	2800	2920	3050	
Current Sense Ratio Drift ${ }^{(5)(8)}$	$\mathrm{dK}_{1} / \mathrm{K}_{1}$	$\begin{aligned} & \text { lout }=0.25 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=-40 \sim 150 \mathrm{C} \end{aligned}$	-10		12	\%
$\mathrm{l}_{\text {OUT }} / \mathrm{l}_{\text {SENSE }}$	K_{2}	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}= \\ & 25 \mathrm{C} \end{aligned}$	2880	2950	3000	
Current Sense Ratio Drift ${ }^{(5)(8)}$	$\mathrm{dK}_{2} / \mathrm{K}_{2}$	$\begin{aligned} & l_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=- \\ & 40 \sim 150 \mathrm{C} \end{aligned}$	-7		11	\%
lout $/ l_{\text {SENSE }}$	K_{3}	$\mathrm{I}_{\text {OUT }}=9 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$	2880	2950	3000	
Current Sense Ratio Drift ${ }^{(5)(8)}$	$\mathrm{dK}_{3} / \mathrm{K}_{3}$	$\mathrm{I}_{\text {OUT }}=9 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$	-7		11	\%
CS Current for OL Detection	$I_{\text {SENSE_OL }}$	$\mathrm{I}_{\text {OUT }}=0.01 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$		3.8	9.8	$\mu \mathrm{A}$
Current Sense Leakage Current	$\mathrm{I}_{\text {SENSEO }}$	Current sense disabled: $\mathrm{V}_{\text {SEn }}=0 \mathrm{~V}$			0.5	$\mu \mathrm{A}$
		Current sense disabled: $-1 \mathrm{~V}<\mathrm{V}_{\text {SENSE }}<$ $4 V^{(5)}$	-0.5		0.5	$\mu \mathrm{A}$
		Current sense enabled: $\mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V}$; Channel ON; I lout = OA; Diagnostic selected; $\mathrm{V}_{\mathrm{INO}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN} 1}=5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=$ 0 V ; I Iouto $=0 \mathrm{~A} ;$ l $_{\text {out }}=3 \mathrm{~A}$	0	1.8	5.2	$\mu \mathrm{A}$
		Current sense enabled: $\mathrm{V}_{\text {SEn }}=5 \mathrm{~V}$; Channel OFF; Diagnostic selected: $\mathrm{V}_{\text {INo }}$ $=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN} 1}=5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{I}_{\text {OUT } 1}=3 \mathrm{~A}$			1	$\mu \mathrm{A}$
CS Saturation Voltage	$\mathrm{V}_{\text {SENSE_SAT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} ; \mathrm{R}_{\mathrm{SENSE}}=2.7 \mathrm{k} \Omega ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \\ & =5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SELO}}=0 \mathrm{~V} ; \text { lout }=9 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \end{aligned}$		5.15		V
CS Saturation Current ${ }^{(5)}$	$I_{\text {SENSE_SAT }}$	$\begin{aligned} & V_{\mathrm{CC}}=7 \mathrm{~V} ; \mathrm{V}_{\mathrm{SENSE}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}= \\ & 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SELO}}=0 \mathrm{~V} ; I O U T=12 \mathrm{~A} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	3.8			mA
Output Saturation Current ${ }^{(5)}$	lout_sat	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}= \\ & 5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	11.5			A

OFF-State Diagnostic

Parameter	Symbol	Conditions	Min	Typ	Max	Units
OFF-State Open-Load Voltage Detection Threshold	VoL	$\mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V}$; Chx OFF; Chx diagnostic selected; $\mathrm{V}_{\text {INO }}=0 \mathrm{~V}$; $\mathrm{V}_{\text {SELO }}=0 \mathrm{~V}$	2	2.9	4	V
OFF-State Output Current During Open Load Detection ${ }^{(9)}$	$\mathrm{I}_{\text {Lotar }}$	$\begin{aligned} & V_{\text {IN }}=0 V ; V_{\text {OUT }}=V_{\text {OL }} ; S E n=5 V ; T_{J}=- \\ & 40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	50	10	0.5	$\mu \mathrm{A}$
OFF-State Diagnostic Delay Time from Falling Edge of Input (See Figure 6)	tostkon	$\mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V}$; Chx ON to OFF transition; Chx diagnostic selected; $\begin{aligned} & \text { e.g. ChO: } V_{\text {INo }}=5 \mathrm{~V} \text { to } 0 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} \text {; } \\ & \text { louto }^{\text {OUA }} ; \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} \end{aligned}$	200	370	600	$\mu \mathrm{s}$
Settling Time for Valid OFF-State Open Load Diagnostic Indication from Rising Edge of Sen	to_ol_v	$\begin{aligned} & \mathrm{V}_{\text {INO }}=0 \mathrm{~V} ; \mathrm{V}_{\text {IN } 1}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{FR}}=0 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}= \\ & 0 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$		30	60	$\mu \mathrm{s}$
OFF-State Diagnostic Delay Time from Rising Edge of $V_{\text {out }}$	to_vol	$\mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V}$; Chx OFF; Chx diagnostic selected; e.g. $\mathrm{ChO} ; \mathrm{V}_{\text {INO }}=0 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V}$; $V_{\text {out }}=0 \mathrm{~V}$ to 4 V		10	30	$\mu \mathrm{s}$
Fault Diagnostic Feedback (See Table 8)						
Current Sense Output Voltage in Fault Condition	$V_{\text {Senseh }}$	$\begin{aligned} & V_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{R}_{\text {SENSE }}=1 \mathrm{k} \Omega \\ & \text { e.g. Ch0 in open load: } \mathrm{V}_{\text {INO }}=0 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}= \\ & 5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}=0 \mathrm{~V} ; \text { Iouto }=0 \mathrm{~A} ; \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} \end{aligned}$	4.7	5.1	5.5	V
Current Sense Output Current in Fault Condition	$\mathrm{I}_{\text {SENSEH }}$	$\mathrm{V}_{\text {CC }}=13 \mathrm{~V} ; \mathrm{V}_{\text {SENSE }}=5 \mathrm{~V}$	5.4	6.5	7.6	mA
Current Sense Timings (Current Sense Mode - See Figure 5) ${ }^{(10)}$						
Current Sense Settling Time from Rising Edge of Sen	tosenseir	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{SENSE}}=1 \mathrm{k} \Omega ; \\ & \mathrm{R}_{\mathrm{L}}=4.3 \Omega \end{aligned}$		22	60	$\mu \mathrm{s}$
Current Sense Disable Delay Time from Falling Edge of Sen	tosenseil	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V} \text { to } 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{SENSE}}=1 \mathrm{k} \Omega ; \\ & \mathrm{R}_{\mathrm{L}}=4.3 \Omega \end{aligned}$		12	20	$\mu \mathrm{s}$
Current Sense Settling Time from Rising Edge of INPUT	$\mathrm{t}_{\text {DSENSE2H }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{SENSE}}=1 \mathrm{k} \Omega ; \\ & \mathrm{R}_{\mathrm{L}}=4.3 \Omega \end{aligned}$		160	400	$\mu \mathrm{s}$
Current Sense Settling Time from Rising Edge of lout (Dynamic Response to a Step Change of lout)	$\Delta \mathrm{t}_{\text {DSENSE2H }}$	$\begin{aligned} & V_{\mathbb{I N}}=5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{R}_{\text {SENSE }}=1 \mathrm{k} \Omega ; I_{\text {SENSE }} \\ & =90 \% \text { of } I_{\text {SENSEMAX }} ; R_{\mathrm{L}}=4.3 \Omega \end{aligned}$			30	$\mu \mathrm{s}$
Current Sense Turn-Off Delay Time From Falling Edge of INPUT	tosenser	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \text { to } 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SEn}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{SENSE}}=1 \mathrm{k} \Omega ; \\ & \mathrm{R}_{\mathrm{L}}=4.3 \Omega \end{aligned}$		8	30	$\mu \mathrm{s}$
Current Sense Timings (Multiplexer Transition Times) ${ }^{(10)}$						
Current Sense Transition Delay from ChX to ChY	toxtor	$\begin{aligned} & V_{\text {INO }}=5 \mathrm{~V} ; \mathrm{V}_{\mathbb{I N} 1}=5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}= \\ & 0 \mathrm{~V} \text { to } 5 \mathrm{~V} ; \mathrm{I}_{\text {OUTO }}=0 \mathrm{~A} ; \mathrm{I}_{\text {out } 1}=3 \mathrm{~A} ; \mathrm{R}_{\text {SENSE }}= \\ & 1 \mathrm{k} \Omega \end{aligned}$		10	20	$\mu \mathrm{s}$
Current Sense Transition Delay from Stable Current Sense on ChX to V Venseh on ChY	toccsiovsenseh	$\begin{aligned} & \mathrm{V}_{\text {INO }}=5 \mathrm{~V} ; \mathrm{V}_{\text {IN } 1}=5 \mathrm{~V} ; \mathrm{V}_{\text {SEn }}=5 \mathrm{~V} ; \mathrm{V}_{\text {SELO }}= \\ & 0 \mathrm{~V} \text { to } 5 \mathrm{~V} ; \mathrm{I}_{\text {OUT0 }}=0 \mathrm{~A} ; \mathrm{I}_{\text {out } 1}=3 \mathrm{~A} ; \mathrm{R}_{\text {SENSE }}= \\ & 1 \mathrm{k} \Omega \end{aligned}$		TBD	TBD	$\mu \mathrm{s}$

Note 1: For each channel
Note 2: Parameter guaranteed only at $\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}$ and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$
Note 3: Not subject to production test and specified by design.
Note 4: PowerMOS leakage included
Note 5: Parameter specified by design; not subject to production test.
Note 6: See Figure 4.
Note 7: Parameter guaranteed by design and characterization; not subject to production test.

Note 8: All values refer to $\mathrm{V}_{\mathrm{cc}}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Note 9: Parameter granted at $-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$
Note 10: Transition delays are measured up to $\pm 10 \%$ of final conditions.

TBD
Figure 2. lout/lsense vs. lout
TBD
Figure 3. Current Sense Accuracy vs. Iout

Figure 4. Switching Time and Pulse Skew

Figure 5. Current Sense Timings (Current Sense Mode)

Figure 6. Tdstкon

6. Typical Characteristics

Figure 7. On-State Resistance vs. $\mathbf{T}_{\text {case }}$
Figure 8. On-State Resistance vs. Vcc

7. Package Information

The NPH770215Q is available in the SSOP16PP package. Figure 9 shows the package view.

Figure 9. Package View
Table 8 provides detailed information about the dimensions.
Table 8. Dimensions

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
A	1.350	1.650	0.053	0.065
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
B	0.200	0.300	0.008	0.012
C	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	3.510	3.710	0.138	0.146
E	6.050	6.200	0.238	0.244
E1	3.800	4.000	0.150	0.157
E2	2.400	2.600	0.094	0.102
E	0.500 (BSC)		0.020 (BSC)	
L	0.400	0.900	0.016	0.035
Θ	0	8	0	8

8. Tape And Reel Information

TBD

