NP213282 DEMO BOARD USER'S GUIDE

NP213282 Demo User's Guide

目录

1. 特性	3
2. 描述	3
3. 框图	3
4. 评估板接插件描述	4
5. 原理图和 PCB	6
6.软件使用	7
7.软件代码	10

1. 特性

8 通道模拟输入,在1Ksps 时动态范围 113db,通道间交叉干扰-120db,输入共模抑制比到打 125db。

2. 描述

NP213282是一款多通道差分同步采样 24 bit ∑△ ADC,其最高速率达到 64kbps,内置可编程放大器 (PGA),内部自带振荡器,也支持外部时钟输入。支持内部测试波形输出。

3. 框图

图 1: NP213282 框图

NP213282 Demo User's Guide

4. 评估板接插件描述

图 2: 评估板实物图-1

表 1: 对外接插件描述

序列号	描述
1	5V 电源输入, DC005 接口。
2	Type C 接口与 PC 通讯用
3	共模输出接口
4	ADC 通道 1~8 输入接口
5	Arduino 兼容接口 可以直接用 Arduino 板对其控制
6	NP213282 内部 DAC 输出

NP213282 Demo User's Guide

图 3: 评估板实物图-2

表 2: 对内接插件描述

序列号	描述
1	AVSS 电源选择(-3.0V/GND)默认 GND
2	AVDD 电源选择(2.5V/3.3V)默认 3.3V
3	Arduino 电源选择 悬空 Arduino 外部供电, 短路 Arduino 由 DC005 供电
4	内部 OPA IN+输入选择, 电位器输入或者是 SMA 输入
5	内部/外部时钟选择,默认使用内部时钟
6	PWDN 引脚短路则拉低,默认悬空 MCU 控制
7	外部有源晶振使能
8	外部时钟选择,使用 SMA 接口输入时钟/使用有源时钟

5. 原理图和 PCB

图 5: ADC 部分

图 6: ADC 输入滤波

图 7: 数字接口部分

6.软件使用

Registers	1			
	Address	Value	ID Control (I	EAD-ONLY)
• Device		2	Adrede: 0x00, Pov	er-On Reset: 0xXX, Name: ID Control Register
 ID CONTROL 	0x00	0x0E		
Global			0 0	0 0 1 1 1 0 x 0E +
 CONFIG1 	0x01	0x91		
 CONFIG2 	0x02	0xE0		
 CONFIG3 	0x03	0x40	DEV_ID[7:6]	NU_CH[1:0]:
 LOFF 	0x04	0x00		Number of Channels These bits indicates number
 Channel-Specific 				7 of channels of the device identication.
 CH1SET 	0x05	0x10		10 : 8-channel product 🗸
 CH2SET 	0x06	0x10		
 CH3SET 	0x07	0x10	8	DEV ID[3:0]:
 CH4SET 	0x08	0x10		Device Identification. These bits indicates the device
 CH5SET 	0x09	0x10		0011: LB131E-v(ADC resolution 24bit MAX ODR 64K)
 CH6SET 	0x0A	0x10		
 CH7SET 	0x0B	0x10		
 CH8SET 	0x0C	0x10		
 OPAMP SENSP 	0x0D	0x00		
 OPAMP SENSN 	0x0E	0x00		
 LOFF SENSP 	0x0F	0x00		5 6
 LOFF SENSN 	0x10	0x00		4
 LOFF FLIP 	0x11	0x00	~	
- · · · · · · ·			•	

图 8: NP213282 软件操作界面 1

表 3:NP213282 demo 软件接口描述

NP213282

Demo User's Guide

序列号	描述
1	导入寄存器配置
2	导出寄存器配置
3	刷新寄存器配置
4	放弃所有寄存器更改
5	放弃当前寄存器更改
6	下发所有寄存器更改
7	寄存器设置,点击翻转
8	寄存器设置,根据描述设置寄存器

图 9: NP213282 软件操作界面 2

表 4:NP213282 demo 软件接口描述

序列号	描述
1	选择采样模式
2	选择采样点数
3	重新连接 demo
4	记录采样数据
5	开始采样
6	停止采样
7	选择通道

图 10: NP213282 频谱分析

7.软件代码

