

Stand-alone Controller Area Network (CAN) controller with SPI interface

FEATURES

- Implements CAN 2.0B at 1.0Mb/s:
 0-8 byte length data field
 Standard and extended data and remote frames
- Receive buffers, masks and filters:
 Two receive buffers with storage prioritized message

storage

- Six 29-bit filters
- Two 29-bit masks
- Data byte filtering on the first two data bytes
- Three transmit buffers with prioritization and abort features the transmittance
- High-speed SPI Interface (10 MHz)
 SPI modes 0.0 and 1.1
- One-shot mode ensures message transmission is attempted only one time
- > Clock out pin with programmable prescaler:
- Start-of-Frame (SOF) signal is available for monitoring the SOF signal
- > Interrupt output pin INT with interrupt enable
- Buffer Full output pins can be configured as Interrupt output for each receive buffer General purpose outputs
- Request-to-Send (RTS) input pins individually can be configured as:
 - Control pins to request transmission for each transmit buffer

General purpose inputs

- Low-power CMOS technology:
 Operates from 4.5V to 5.5V
 5mA dynamic current (typical)
 - 1µA standby current (typical) (Sleep mode)
- Support temperature range: Industrial: -40°C-85°C

PRODUCT APPEARANCE

SIT2515

Provide environmentally friendly lead-free package

DESCRIPTION

The SIT2515 is a stand-alone Controller Area Network (CAN) controller that implements the CAN specification, version 2.0B. The chip is mainly used in automotive and industrial applications for data receiving and transmission.

It is capable of transmitting and receiving both standard and extended data and remote frames. The SIT2515 has two acceptance masks and six acceptance filters that are used to filter out unwanted messages, thereby reducing the host MCUs overhead. The SIT2515 communicates with MCU through the industry-standard SPI interface.

Note: EP (Exposed Pad), recommended grounding.

PIN DESCRIPTION

SOP18	TSSOP20	QFN20	Symbol	Description	Spare pin function
1	1	19	ΤΧΟΔΝ	Transmit output pin to	
1	1	17	17ter IV	CAN bus.	
C	r	20	DVCAN	Receive input pin from	
2	2	20	KACAN	CAN bus.	
n	r	1		Clock output pin with	Start-of-Frame signal
3	3	1	CLKUU1/SUF	programmable prescaler.	
				Transmit buffer TXB0	General digital signal input,
4	4	2	TX0RTS	request-to-send. 100 k Ω	100 k Ω internal pull-up to
				internal pull-up to VDD.	VDD.
				Transmit buffer TXB1.	General digital signal input,
5	5	3	TX1RTS	request-to-send. 100 k Ω	100 k Ω internal pull-up to
				internal pull-up to VDD.	VDD.

芯力	特
	বর

SIT2515 Stand-alone Controller Area Network (CAN) controller with SPI interface

SOP18	TSSOP20	QFN20	Symbol	Description	Spare pin function			
	6, 15	4, 13	NC	No internal connection.				
6	7	5	TX2RTS	Transmit buffer TXB2 request-to-send. 100 k Ω internal pull-up to VDD.	General digital signal input, 100 kΩ internal pull-up to VDD.			
7	8	6	OSC2	Oscillator output (Quartz resonator connection).				
8	9	7	OSC1	Oscillator input (Quartz resonator or external clock connection).	External clock input.			
9	10	8	GND	Ground.				
10	11	9	RX1BF	Receive buffer RXB1 interrupt pin or general purpose digital output.	General purpose digital output.			
11	12	10	RX0BF	Receive buffer RXB0 interrupt pin or general purpose digital output.	General purpose signal output.			
12	13	11	INT	Interrupt output pin.				
13	14	12	SCK	SPI Clock input pin for SPI interface.				
14	16	14	SI	Data input pin for SPI interface.				
15	17	15	SO	Data output pin for SPI interface.				
16	18	16	CS	Chip select input pin for SPI interface.				
17	19	17	RESET	Active low device reset input.				
18	20	18	V_{DD}	Positive supply for logic and I/O pins.				
Note:								
1 CAN-0	Controller Are	ea Network	Σ.					
2 SPI-Se	2 SPI-Serial Peripheral Interface							

LIMITING VALUES

SIT2515

Description	Value		T T . */	
Parameter	Symbol	Min	Max	Unit
Supply voltage	VCC		7	V
Input voltage (all pins)	VI	-0.6	VCC+1.0	V
Input voltage for RXCAN, CS, TXnRTS, SCK, SI pins at functional check mode	VI	-0.6	VCC+1.0	V
Ambient (storage) temperature	Та	-60	125	°C

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

RECOMMENDED OPERATION MODES

Donomaton	Symbol	Symbol		I ⊺:*4	
rarameter	Symbol	Min	Max	Unit	
Supply voltage	VCC	4.5	5.5	V	
Input voltage (all pins)	VI	0	VCC	V	
Input voltage for RXCAN, CS, TXnRTS, SCK, SI pins at functional check mode	VI	-0.3	VCC+1.0	V	
Ambient (operating) temperature	Та	-40	85	°C	

Fig 2 Block diagram

Fig 3 CAN core module block diagram

1 丁芯力特

SIT2515 has three transmit and two receive buffers, two receive masks (one for each receive buffer), and a total of six receive filtering registers. <u>Fig 4</u> shows a block diagram of these buffers and their connection to the core module of the CAN protocol:

Fig 4 Block diagram of internal buffers and protocol core module

Stand-alone Controller Area Network (CAN) controller with SPI interface

DC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Supply voltage	VDD		4.5		5.5	V
Register retention voltage	V _{RET}		2.4			V
High-level input voltage RXCAN	V _{IH1}		2		VDD+1	V
High-level input voltage SCK, CS, SI, TXnRTS	V _{IH2}		0.7VDD		VDD+1	V
High-level input voltage OSC1	V _{IH3}		0.85VDD		VDD	V
High-level input voltage RESET	V _{IH4}		0.85VDD		VDD	V
Low-level input voltage RXCAN	V _{IL1}		-0.3		0.15VDD	V
Low-level input voltage SCK, CS, SI, TXnRTS	V _{IL2}		-0.3		0.4	V
Low-level input voltage OSC1	V _{IL3}		VSS		0.3VDD	V
Low-level input voltage RESET	V _{IL4}		VSS		0.15VDD	V
Low-level output voltage TXCAN pin	V _{OL1}	I _{OL} =0.6mA V _{CC} =4.5V			0.6	V
Low-level output voltage RXnBF pin	V _{OL2}	I _{OL} =8.5mA V _{CC} =4.5V			0.6	V
Low-level output voltage SO, CLKOUT pins	V _{OL3}	I _{OL} =2.1mA V _{CC} =4.5V			0.6	V

KIT	故	力特
		10

Stand-alone Controller Area Network (CAN) controller with SPI interface

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Low-level output voltage INT pin	V _{OL4}	I _{OL} =1.6mA V _{CC} =4.5V			0.6	V
High-level output voltage TXCAN pin	V _{OH1}	I _{OH} =-3.0mA V _{CC} =4.5V	3.8			V
High-level output voltage RXnBF pin	V _{OH2}	I _{OH} =-3.0mA V _{CC} =4.5V	3.8			V
High-level output voltage SO, CLKOUT pins	V _{OH3}	I _{OH} =400uA V _{CC} =4.5V	4.0			V
High-level output voltage INT pin	V _{OH4}	I _{OH} =-1.0mA V _{CC} =4.5V	3.8			V
Low-level input leakage current RXCAN, SCK, SI, CS, RESET pins	I _{ILL1}				-1	
Low-level input leakage current OSC1 pin	I _{ILL2}	V_{IN} =0.0V V_{CC} =5.5V V_{CS} =V_{RESET}=5.5V			-5	μΑ
Low-level input leakage current SO, CLKOUT/SOF, RX0BF, RX1BF pins	I _{oll1}			-1		
High-level input leakage current RXCAN, SCK, SI, CS, RESET pins	I _{ILH1}	V _{IN} =5.5V			1	
High-level input leakage current OSC1 pin	I _{ILH1}	V _{CC} =5.5V V _{CS} =V _{RESET} =5.5V			5	μΑ
High-level output leakage current	I _{OLH1}				1	
Operating consumption current	I _{IOCC}	F _{osc} =25MHz V _{cc} =5.5V			10	mA
Standby consumption current	I _{CCS}	V_{IN} =5.5V, V_{CC} =5.5V V_{CS} = V_{RESET} =5.5V			5	μΑ

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT	
		CAN-interfac	e				
Wake-up noise filter	$t_{\rm WF}$	V _{CC} =5.5V	100			ns	
		RESET pin					
RESET pin low time	t _{rl}	V _{CC} =2.7V	2			μs	
	CLKOUT pin						
CLKOUT pin high time	t _h CLKOUT	T _{OSC} =40ns	15			ns	
CLKOUT pin low time	t _I CLKOUT	T _{OSC} =40ns	15			ns	
CLKOUT pin rise time	t _r CLKOUT	0.3VDD-0.7VDD			5	ns	
CLKOUT pin fall time	t _f CLKOUT	0.7VDD-0.3VDD			5	ns	
CLOCKOUT propagation delay	t _d CLKOUT	In the sampling points measured, device as the receiving node and six points for frequency			100	ns	
Start-Of-Frame high time 15	t _h SOF				2T _{osc}	ns	
Start-Of-Frame propagation delay 16	t _d SOF				$\begin{array}{c} 2T_{OSC} + 0.\\ 5T_Q \end{array}$	ns	
RXCAN	\	sample point		15			
		SPI -interfac	e		•		
Clock frequency	\mathbf{f}_{CLK}				10	MHz	
CS setup time	t _{CSS}		50			ns	
CS hold time	t _{CSH}		50			ns	
CS disable time	t _{CSD}		50			ns	

SIT2515

多 1 芯カ	特	Stand-alone Controller	Area Network ((CAN) control	SI ler with SPI in	F2515 nterface
PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Data setup time (SI pin)	t _{su}		10			ns
Data hold time (SI pin)	t _{HD}		10			ns
Clock high time	t _{HI}		45			ns
Clock low time	t _{LO}		45			ns
Clock delay time	t _{CLD}		50			ns
Clock enable time	t _{CLE}		50			ns
Output valid from clock low	tv				45	ns
Output hold time (SO pin)	t _{HO}		0			ns
Output disable time (SO pin)	t _{DIS}				100	ns

ADDITIONAL DESCRIPTION

SIT2515

1 High-speed SPI interface

The SIT2515 is designed to interface directly with the Serial Peripheral Interface (SPI) port available on many microcontrollers and supports Mode 0.0 and Mode 1.1. Commands and data are sent to the device via the SI pin, with data being clocked in on the rising edge of SCK. Data is driven out by the SIT2515 (on the SO line) on the falling edge of SCK. The CS pin must be held low while any operation is performed.

The SIT2515 expects the first byte after CS lowered to be the instruction/command byte. This means that CS must be raised and then lowered again to input another command.

<u>Table 1</u> contain complete list of bytes of SPI instruction set. On detail output and input diagram of both operation modes (Mode 0.0 & Mode 1.1) please refer to Fig 13 & 14.

Instruction name	Instruction format	Description
DECTE	1100.0000	Resets internal registers to default state,
KESTE	1100 0000	set Configuration mode.
ΡΕΛΟ	0000 0011	Read data from register beginning at
KLAD	0000 0011	selected address.
		When reading a receive buffer, reduces
		the overhead of a normal read command
		by placing the address pointer at one of
Read RX Buffer	1001 0nm0	four locations, as indicated by "n, m".
		Note: The associated RX flag bit
		(CANINTF.RXnIF) will be cleared after
		bringing CS high.
WDITE	0000.0010	Write data to register beginning at
WKITE	0000 0010	selected address.
		When loading a transmit buffer, reduces
L and TV Duffer	0100 0abc	the overhead of a normal Write command
Loau IA Builei		by placing the address pointer at one of
		six locations as indicated by "a, b, c".
DTS (Massage		Instructs controller to begin message
RTS (Message Bequest Te Send)	1000 0nnn	transmission sequence for any of the
Kequest-10-Selia)		transmit buffers.
		Quick polling command that reads
Read Status	1010 0000	several status bits for transmit and
		receive functions.
		Quick polling command that indicates
RX Status	1011 0000	filter match and message type (standard,
		extended and/or remote) of received

Table 1 SPI instruction set

Stand-alone Controller Area Network (CAN) controller with SPI interface

SIT2515

		message.
		Allows the user to set or clear individual
		bits in a particular register.
		Note: Not all registers can be
Bit Modify	0000 0101	bit-modified with this command.
		Executing this command on registers that
		are not bit-modified will force the mast to
		FFh.

The RESET instruction can be used to re-initialize the internal registers of the SIT2515 and set Configuration mode. This command provides the same functionality, via the SPI interface, as the RESET pin. The RESET instruction is a single-byte instruction that requires selecting the device by pulling CS low, sending the instruction byte and then raising CS. It is highly recommended that the reset command be sent (or the RESET pin be lowered) as part of the power-on initialization sequence (or lower RESET).

The READ instruction is started by lowering the CS pin. The READ instruction is then sent to the SIT2515 followed by the 8-bit address (A7 through A0). Next, the data stored in the register at the selected address will be shifted out on the SO pin. The internal address pointer is automatically incremented to the next address once each byte of data is shifted out. Therefore, it is possible to read the next consecutive register address by continuing to provide clock pulses. Any number of consecutive register locations can be read sequentially using this method. The read operation is terminated by raising the CS pin (Fig 4).

Fig 5 READ instruction

The Read RX Buffer instruction (Fig 5) provides a means to quickly address a receive buffer for reading. This instruction reduces the SPI overhead by one byte, the address byte. The command byte actually has four possible values that determine the address pointer location. Once the command byte is sent, the controller clocks out the data at the address location the same as the READ instruction (i.e., sequential reads are possible). This instruction further reduces the SPI overhead by automatically clearing the associated receive flag (CANINTF.RXnIF) when CS is raised at the end of the command.

The RTS command can be used to initiate message transmission for one or more of the transmit buffers. The SIT2515 is selected by lowering the CS pin. The RTS command byte is then sent. Shown in Fig 8, the last 3 bits of this command indicate which transmit buffer(s) are enabled to send. This command will set the TxBnCTRL. TXREQ bit for the respective buffer(s). Any or all of the last three bits can be set in a single command. If the RTS command is sent with nnn = 000, the command will be ignored.

Fig 9 REQUEST-TO-SEND instruction (RTS)

The Read Status instruction allows single instruction access to some of the often used status bits for message reception and transmission. The SIT2515 is selected by lowering the CS pin and the read status command byte, shown in Fig.9, is sent to the SIT2515. Once the command byte is sent, the SIT2515 will return eight bits of data that contain the status. If additional clocks are sent after the first eight bits are transmitted, the SIT2515 will continue to output the status bits as long as the CS pin is held low and clocks are provided on SCK. Each status bit returned in this command may also be read by using the standard read command with the appropriate register address.

Stand-alone Controller Area Network (CAN) controller with SPI interface

SIT2515

SOP18 DIMENTIONS

PACKAGE SIZE					
Symbol	nbol Min./mm Max.				
А	11.25 11.65				
A1	0.40TYP				
A2	1.2	7TYP			
В	10.10	10.50			
B1	7.30	7.70			
С	2.24 2.44				
C1	1.05TYP				
C2	0.20	0.33			
C3	0.10 0.27				
D	1.395 TYP				
D1	0.70 1.00				
Е	0.20 0.30				
E1	0° 8°				
E2	7°TYP				
E3	5°TYP				
R1	0.5°TYP				
R2	0.2°TYP				

Stand-alone Controller Area Network (CAN) controller with SPI interface

QFN20 DIMENTIONS

1 芯力特

TSSOP20 DIMENTIONS

PACKAGE SIZE						
Symbol Min./mm Max./mm						
А		1.20				
A1	0.05	0.15				
A2	0.90	1.05				
A3	0.34	0.54				
b	0.20	0.28				
b1	0.20	0.24				
с	0.10	0.19				
cl	0.10	0.15				
D	6.40	6.60				
D1	4.00	4.40				
Е	6.25	6.55				
E1	4.30	4.50				
e	0.65BSC					
L	0.45	0.75				
L1	1.00	OREF				
L2	0.25	5BCS				
R	0.09					
R1	0.09					
S	0.20					
θ1	0°	8°				
θ2	10°	14°				
θ3	10°	14°				

TAPE AND REEL INFORMATION

SIT2515

A0	Dimension designed to accommodate the
	component width
DO	Dimension designed to accommodate the
БО	component length
VO	Dimension designed to accommodate the
KU	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Direction of Feed

¥

PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
QFN20	330	12.5±0.20	3.23±0.10	3.23±0.10	1.05±0.10	4.00±0.10	12.00±0.30
SOP18	490	105	10.95±0.10	12.05±0.10	2.75±0.10	12.00±0.10	24.00±0.20
TSSOP20	490	105	6.88±0.10	7.15±0.10	1.65±0.10	8.00±0.10	16.00±0.10

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT2515T-I/SO	SOP18	Tape and reel
SIT2515T-I/ST	TSSOP20	Tape and reel
SIT2515T-I/ML	QFN20	Tape and reel

SOP18 is packed with 1500 pieces/disc in braided packaging; TSSOP20 is packed with 2500 pieces/disc in braided packaging; QFN20 is packed with 3000 pieces/disc in braided packaging.

REFLOW SOLDERING

1 al ametel	Leau-mee soluering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3 °C/second max	
Preheat time ts (T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds	
Melting time t_L (T _L =217 °C)	60-150 seconds	
Peak temp T _P	260-265 °C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate $(T_P \text{ to } T_L)$	6 °C/second max	
Normal temperature 25°C to peak temperature	8 minutes max	
T _P time		

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0	Initial version.	November 2022